High-accuracy mesh-free quadrature for trimmed parametric surfaces and volumes

Abstract This work presents a high-accuracy, mesh-free, generalized Stokes theorem-based numerical quadrature scheme for integrating functions over trimmed parametric surfaces and volumes. The algorithm relies on two fundamental steps: (1) We iteratively reduce the dimensionality of integration using the generalized Stokes theorem to line integrals over trimming curves, and (2) we employ numerical antidifferentiation in the generalized Stokes theorem using high-order quadrature rules. The scheme achieves exponential convergence up to trimming curve approximation error and has applications to computation of geometric moments, immersogeometric analysis, conservative field transfer between high-order curvilinear meshes, and initialization of multi-material simulations. We compare the quadrature scheme to commonly-used quadrature schemes in the literature and show that our scheme is much more efficient in terms of number of quadrature points used. We provide an open-source implementation of the scheme in MATLAB as part of QuaHOG, a software package for Quadrature of High-Order Geometries.

[1]  Ernst Rank,et al.  Efficient and accurate numerical quadrature for immersed boundary methods , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[2]  Kuanren Qian,et al.  Analysis-suitable unstructured T-splines: Multiple extraordinary points per face , 2021, Computer Methods in Applied Mechanics and Engineering.

[3]  Xin Li,et al.  Tuned hybrid nonuniform subdivision surfaces with optimal convergence rates , 2020, International Journal for Numerical Methods in Engineering.

[4]  Ernst Rank,et al.  Numerical integration of discontinuous functions: moment fitting and smart octree , 2017 .

[5]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[6]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[7]  Alexander Düster,et al.  Numerical integration of discontinuities on arbitrary domains based on moment fitting , 2016 .

[8]  John A. Evans,et al.  Spectral mesh-free quadrature for planar regions bounded by rational parametric curves , 2021, Comput. Aided Des..

[9]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[10]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[11]  Alvise Sommariva,et al.  Gauss-Green cubature and moment computation over arbitrary geometries , 2009, J. Comput. Appl. Math..

[12]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[13]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[14]  B. Jüttler,et al.  Numerical integration on trimmed three-dimensional domains , 2019 .

[15]  John A. Evans,et al.  Mesh quality metrics for isogeometric Bernstein–Bézier discretizations , 2018, Computer Methods in Applied Mechanics and Engineering.

[16]  Mats G. Larson,et al.  Multimesh finite element methods: Solving PDEs on multiple intersecting meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[17]  Fehmi Cirak,et al.  Isogeometric analysis using manifold-based smooth basis functions , 2016, ArXiv.

[18]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[19]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[20]  Massimiliano Martinelli,et al.  Isogeometric Analysis on V-reps: First results , 2019, Computer Methods in Applied Mechanics and Engineering.

[21]  Alexander V. Tuzikov,et al.  Moment Computation for Objects with Spline Curve Boundary , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[23]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[24]  CHRISTIAN HAFNER,et al.  X-CAD: Optimizing CAD Models with Extended Finite Elements , 2019 .

[25]  Tzanio V. Kolev,et al.  High-Order Multi-Material ALE Hydrodynamics , 2018, SIAM J. Sci. Comput..

[26]  Thomas J. R. Hughes,et al.  Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines , 2020, Computer Methods in Applied Mechanics and Engineering.

[27]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[28]  Maxim Olshanskii,et al.  Numerical integration over implicitly defined domains for higher order unfitted finite element methods , 2016, 1601.06182.

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[31]  Adarsh Krishnamurthy,et al.  Accurate moment computation using the GPU , 2010, SPM '10.

[32]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[33]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[34]  Xin Li,et al.  Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[35]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[36]  M. Larson,et al.  Cut finite element methods for elliptic problems on multipatch parametric surfaces , 2017, 1703.07077.

[37]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[38]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[39]  Alessandro Reali,et al.  Error-estimate-based Adaptive Integration For Immersed Isogeometric Analysis , 2019, Comput. Math. Appl..

[40]  Bert Jüttler,et al.  First Order Error Correction for Trimmed Quadrature in Isogeometric Analysis , 2017, Lecture Notes in Computational Science and Engineering.

[41]  Bingcheng Li The moment calculation of polyhedra , 1993, Pattern Recognit..

[42]  Vadim Shapiro,et al.  Adaptively weighted numerical integration over arbitrary domains , 2014, Comput. Math. Appl..

[43]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[44]  Darren Engwirda,et al.  Locally optimal Delaunay-refinement and optimisation-based mesh generation , 2014 .

[45]  Jean B. Lasserre,et al.  Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.

[46]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[47]  Jeffrey Grandy,et al.  Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[48]  Thomas J. R. Hughes,et al.  Truncated hierarchical tricubic spline construction on unstructured hexahedral meshes for isogeometric analysis applications , 2017, Comput. Math. Appl..

[49]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[50]  Benjamin Marussig,et al.  A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects , 2017, Archives of Computational Methods in Engineering.

[51]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[52]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[53]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .