Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

Abstract Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p -GaN single-crystalline layers and the (ZnO:Cu NWs)/( p -GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications and for quantum well preparation.

[1]  D. Lincot,et al.  Mechanistic study of ZnO nanorod array electrodeposition , 2008 .

[2]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[3]  D. G. Thomas The exciton spectrum of zinc oxide , 1960 .

[4]  D Lincot,et al.  The impact of morphology upon the radiation hardness of ZnO layers , 2008, Nanotechnology.

[5]  D. C. Reynolds,et al.  Optically pumped ultraviolet lasing from ZnO , 1996 .

[6]  J. Narayan,et al.  Room temperature ferromagnetism in Zn1−xCuxO thin films , 2007 .

[7]  D. Lincot,et al.  Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KCl solution at 70 ◦ C , 2006 .

[8]  S. Lau,et al.  Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles , 2007 .

[9]  Thierry Pauporté,et al.  Design of Solution-Grown ZnO Nanostructures , 2009 .

[10]  D. C. Reynolds,et al.  Production and annealing of electron irradiation damage in ZnO , 1999 .

[11]  Daniel Lincot,et al.  Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition , 2006 .

[12]  F. Zeng,et al.  Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering , 2007 .

[13]  Oleg Lupan,et al.  Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays , 2009 .

[14]  S. Zhang,et al.  First-principles study of transparent p -type conductive SrCu 2 O 2 and related compounds , 2002 .

[15]  V. Ursaki,et al.  Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion , 2008, Nanotechnology.

[16]  D. Lincot,et al.  Electrochemical growth of epitaxial eosin/ZnO hybrid films , 2003 .

[17]  Thierry Pauporté,et al.  Key Growth Parameters for the Electrodeposition of ZnO Films with an Intense UV-Light Emission at Room Temperature , 2009 .

[18]  W. G. Vernetson,et al.  Neutron Transmutation Doping and Radiation Hardness for Solution-Grown Bulk and Nano-Structured ZnO , 2008 .

[19]  P. Bhattacharya,et al.  Raman Scattering Studies in Dilute Magnetic Semiconductor Zn(1-x)Co(x)O , 2006 .

[20]  S. Lau,et al.  Ferromagnetic Cu doped ZnO as an electron injector in heterojunction light emitting diodes , 2008 .

[21]  V. Ursaki,et al.  Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication , 2010 .

[22]  D. Meier,et al.  Analysis of copper incorporation into zinc oxide nanowires. , 2008, ACS nano.

[23]  R. Chang,et al.  Local structures of copper-doped ZnO films , 2008 .

[24]  D. Lincot,et al.  Modelling and numerical simulation of hydrodynamical processes in a confined rotating electrode configuration , 2004 .

[25]  V. Lazorenko,et al.  Zinc oxide – analogue of GaN with new perspective possibilities , 2004 .

[26]  L. Ono,et al.  Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium , 2010 .

[27]  Kuei-Hsien Chen,et al.  Structural and optical properties of single crystal Zn1-xMgxO nanorods - Experimental and theoretical studies , 2007 .

[28]  C. Youn,et al.  Raman scattering and photoluminescence of As ion-implanted ZnO single crystal , 2004 .

[29]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[30]  Xin Wang,et al.  Fabrication of GaN nanowire arrays by confined epitaxy , 2006 .

[31]  Yanfa Yan,et al.  Doping of ZnO by group-IB elements , 2006 .

[32]  Shenggang Yan,et al.  Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction , 2002 .

[33]  Zhongfan Liu,et al.  Low-temperature growth and properties of ZnO nanowires , 2004 .

[34]  S. T. Lee,et al.  Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. , 2008, Nano letters.

[35]  Mengyan Shen,et al.  Optically pumped lasing of ZnO at room temperature , 1991 .

[36]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[37]  D. Lincot,et al.  Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide , 2000 .

[38]  Moon-Ho Ham,et al.  ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. , 2007, Small.

[39]  David C. Look,et al.  Radiation Hardness of ZnO at Low Temperatures , 2004 .

[40]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[41]  Manijeh Razeghi,et al.  Electroluminescence at 375nm from a ZnO∕GaN:Mg∕c-Al2O3 heterojunction light emitting diode , 2006 .

[42]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[43]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[44]  X. Zhang,et al.  Photoluminescent properties of copper-doped zinc oxide nanowires , 2004 .

[45]  Oleg Lupan,et al.  Novel hydrogen gas sensor based on single ZnO nanorod , 2008 .

[46]  J. Ding,et al.  Cu-Doped ZnO Nanoneedles and Nanonails : Morphological Evolution and Physical Properties , 2008 .

[47]  Prashant K. Sharma,et al.  Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods , 2009 .

[48]  Leonid Chernyak,et al.  Focused‐ion‐beam fabrication of ZnO nanorod‐based UV photodetector using the in‐situ lift‐out technique , 2008 .

[49]  Ion Tiginyanu,et al.  Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells , 2010 .