Tidally heated convection: Constraints on Europa's ice shell thickness

[1] The thickness of Europa's ice shell is constrained with numerical experiments of thermal convection, including heterogeneous tidal heating. Thermal convection occurs in the stagnant lid regime with most of the tidal heating located in the bottom half of the layer. The addition of tidal heating mainly results in the increase of the temperature of the well-mixed interior and in the decrease of the heat flux at the base of the ice layer. In many simulations, the ice in hot plumes is heated up to its melting point. This induces episodic upwellings (0.5 Ma) of partially molten ice up to the base of the conductive lid, with possible implications for the formation of lenticulae and chaos regions. The thickness of the convective ice shell in equilibrium with the heat flow from the silicate core is estimated to be about 20–25 km. Tidal dissipation and surface temperature variations create lateral variations of the ice shell thickness of about 5 km, with maxima near the equator at the Jovian and anti-Jovian points and minima at midlatitudes. Surface heat flux is about 35–40 mW.m−2; it is almost constant all over Europa's surface, even though the tidal dissipation rate is four times larger at the poles than at the equator.

[1]  A. Davaille,et al.  Transient high-Rayleigh-number thermal convection with large viscosity variations , 1993, Journal of Fluid Mechanics.

[2]  Louis Moresi,et al.  Numerical investigation of 2D convection with extremely large viscosity variations , 1995 .

[3]  Doris Breuer,et al.  Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites , 2002 .

[4]  M. Manga,et al.  Causes, characteristics and consequences of convective diapirism on Europa , 2002 .

[5]  J. Delaney,et al.  Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux , 2001 .

[6]  Olivier Grasset,et al.  The Cooling Rate of a Liquid Shell in Titan's Interior , 1996 .

[7]  Steven W. Squyres,et al.  Liquid water and active resurfacing on Europa , 1982, Nature.

[8]  W. Durham,et al.  Rheology of ice I at low stress and elevated confining pressure , 2001 .

[9]  O. Castelnau,et al.  Compressive creep of ice containing a liquid intergranular phase: Rate‐controlling processes in the dislocation creep regime , 1999 .

[10]  S. D. Kadel,et al.  Chaos on Europa , 1999 .

[11]  M. Montagnat,et al.  Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization , 2000 .

[12]  J. Nye Thermal behaviour of glacier and laboratory ice , 1991 .

[13]  Joseph A. Burns,et al.  Evolution of Lineaments on Europa: Clues from Galileo Multispectral Imaging Observations , 1998 .

[14]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[15]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[16]  Maurice A. Biot,et al.  Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena , 1954 .

[17]  C. Sotin,et al.  Thermal convection in the outer shell of large icy satellites , 2001 .

[18]  Olivier Grasset,et al.  Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature‐dependent viscosity: Implications for planetary thermal evolution , 1998 .

[19]  Lijie Han,et al.  Numerical simulations of convection in Europa's ice shell: Implications for surface features , 2003 .

[20]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[21]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[22]  J. Zschau Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides , 1978 .

[23]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[24]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[25]  David L. Goldsby,et al.  Grain boundary sliding in fine-grained ice I , 1997 .

[26]  Hauke Hussmann,et al.  Thermal Equilibrium States of Europa's Ice Shell: Implications for Internal Ocean Thickness and Surface Heat Flow , 2002 .

[27]  C. Sotin,et al.  Turbulent 3‐D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics , 1994 .

[28]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[29]  David M. Cole,et al.  The microstructure of ice and its influence on mechanical properties , 2001 .

[30]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[31]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[32]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[33]  Javier Ruiz,et al.  The stability against freezing of an internal liquid-water ocean in Callisto , 2001, Nature.

[34]  M. Montagnat,et al.  Comment on “Superplastic deformation of ice: Experimental observations” by D. L. Goldsby and D. L. Kohlstedt , 2002 .

[35]  Hanbiao Wang,et al.  Convection and Internal Melting of Europa's Ice Shell , 2000 .

[36]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[37]  J. F. Nye,et al.  The Geometry of Water Veins and Nodes in Polycrystalline Ice , 1989, Journal of Glaciology.

[38]  T. H. Jacka,et al.  A review of ice rheology for ice sheet modelling , 1989 .

[39]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[40]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .

[41]  D. Stevenson Limits on the Variation of Thickness of Europa's Ice Shell , 2000 .

[42]  Louis-Noel Moresi,et al.  Non-Newtonian Stagnant Lid Convection and Magmatic Resur facing on Venus☆ , 1999 .

[43]  G. Schubert,et al.  The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection , 1990, Journal of Fluid Mechanics.

[44]  U. Christensen Heat transport by variable viscosity convection and implications for the Earth's thermal evolution , 1984 .

[45]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[46]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[47]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[48]  M. Doin,et al.  Heat transport in stagnant lid convection with temperature‐ and pressure‐dependent Newtonian or non‐Newtonian rheology , 1999 .

[49]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[50]  John S. Wettlaufer,et al.  The premelting of ice and its environmental consequences , 1995 .

[51]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[52]  David G. Vaughan,et al.  Tidal flexure at ice shelf margins , 1995 .

[53]  J. Head,et al.  Evaluation of models for the formation of chaotic terrain on Europa , 2000 .

[54]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.