Minimal doubly resolving sets and the strong metric dimension of some convex polytopes

Abstract In this paper we consider two similar optimization problems on graphs: the strong metric dimension problem and the problem of determining minimal doubly resolving sets. We prove some properties of strong resolving sets and give an integer linear programming formulation of the strong metric dimension problem. These results are used to derive explicit expressions in terms of the dimension n, for the strong metric dimension of two classes of convex polytopes D n and T n . On the other hand, we prove that minimal doubly resolving sets of D n and T n have constant cardinality for n > 7 .

[1]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[2]  Ortrud R. Oellermann,et al.  The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..

[3]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[4]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[5]  Ortrud R. Oellermann,et al.  The metric dimension of Cayley digraphs , 2006, Discret. Math..

[6]  N. Duncan Leaves on trees , 2014 .

[7]  Jozef Kratica,et al.  Computing minimal doubly resolving sets of graphs , 2009, Comput. Oper. Res..

[8]  James D. Currie,et al.  The metric dimension and metric independence of a graph , 2001 .

[9]  M. Cangalovic,et al.  COMPUTING STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF GRAPHS BY GENETIC ALGORITHMS , 2008 .

[10]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[11]  Gary Chartrand,et al.  On k-dimensional graphs and their bases , 2003, Period. Math. Hung..

[12]  Martin Baĉa On Magic Labellings of Convex Polytopes , 1992 .

[13]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[14]  Nael B. Abu-Ghazaleh,et al.  Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing , 2006, ADHOC-NOW.

[15]  Jozef Kratica,et al.  Computing the metric dimension of graphs by genetic algorithms , 2009, Comput. Optim. Appl..

[16]  Muhammad Imran,et al.  On families of convex polytopes with constant metric dimension , 2010, Comput. Math. Appl..

[17]  Nael B. Abu-Ghazaleh,et al.  Virtual Coordinate Backtracking for Void Traversal in Geographic Routing , 2005, ArXiv.

[18]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..