Minimal doubly resolving sets and the strong metric dimension of some convex polytopes
暂无分享,去创建一个
Milica Stojanovic | Jozef Kratica | Mirjana Cangalovic | Vera Kovacevic-Vujcic | M. Cangalovic | V. Kovacevic-Vujcic | M. Stojanovic | Jozef J. Kratica
[1] Thomas Erlebach,et al. Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.
[2] Ortrud R. Oellermann,et al. The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..
[3] Azriel Rosenfeld,et al. Landmarks in Graphs , 1996, Discret. Appl. Math..
[4] José Cáceres,et al. On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..
[5] Ortrud R. Oellermann,et al. The metric dimension of Cayley digraphs , 2006, Discret. Math..
[6] N. Duncan. Leaves on trees , 2014 .
[7] Jozef Kratica,et al. Computing minimal doubly resolving sets of graphs , 2009, Comput. Oper. Res..
[8] James D. Currie,et al. The metric dimension and metric independence of a graph , 2001 .
[9] M. Cangalovic,et al. COMPUTING STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF GRAPHS BY GENETIC ALGORITHMS , 2008 .
[10] András Sebö,et al. On Metric Generators of Graphs , 2004, Math. Oper. Res..
[11] Gary Chartrand,et al. On k-dimensional graphs and their bases , 2003, Period. Math. Hung..
[12] Martin Baĉa. On Magic Labellings of Convex Polytopes , 1992 .
[13] David R. Wood,et al. On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..
[14] Nael B. Abu-Ghazaleh,et al. Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing , 2006, ADHOC-NOW.
[15] Jozef Kratica,et al. Computing the metric dimension of graphs by genetic algorithms , 2009, Comput. Optim. Appl..
[16] Muhammad Imran,et al. On families of convex polytopes with constant metric dimension , 2010, Comput. Math. Appl..
[17] Nael B. Abu-Ghazaleh,et al. Virtual Coordinate Backtracking for Void Traversal in Geographic Routing , 2005, ArXiv.
[18] Gary Chartrand,et al. Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..