First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors.

Spatially resolved polarization switching in ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.

[1]  Non-Kolmogorov-Avrami-Ishibashi switching dynamics in nanoscale ferroelectric capacitors. , 2010, Nano letters.

[2]  M. Alexe,et al.  Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films. , 2011, ACS nano.

[3]  Rainer Waser,et al.  Polar oxides : properties, characterization, and imaging , 2004 .

[4]  Peter Maksymovych,et al.  Dynamic conductivity of ferroelectric domain walls in BiFeO₃. , 2011, Nano letters.

[5]  O. Auciello,et al.  Calculation of frequency-dependent coercive field based on the investigation of intrinsic switching kinetics of strained Pb(Zr0.2Ti0.8)O3 thin films , 2011 .

[6]  Thomas Tybell,et al.  Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures , 1997 .

[7]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .

[8]  T. Noh,et al.  Domain switching kinetics in disordered ferroelectric thin films. , 2007, Physical review letters.

[9]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[10]  A. Tagantsev,et al.  Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films , 2002 .

[11]  M. Molotskii Generation of ferroelectric domains in atomic force microscope , 2003 .

[12]  Y. Chu,et al.  Domain growth dynamics in single-domain-like BiFeO3 thin films , 2009 .

[13]  Sergei V. Kalinin,et al.  Piezoresponse force spectroscopy of ferroelectric-semiconductor materials , 2006, cond-mat/0610764.

[14]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[15]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[16]  H. Seggern,et al.  Experimental and theoretical investigation on polarization reversal in unfatigued lead-zirconate-titanate ceramic , 2010 .

[17]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[18]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[19]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[20]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[21]  I. Kunishima,et al.  Spatial variations in local switching parameters of ferroelectric random access memory capacitors , 2009 .

[22]  M. Gabay,et al.  Local switching of two-dimensional superconductivity using the ferroelectric field effect , 2006, Nature.

[23]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[24]  T. Granzow,et al.  Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism , 2010 .

[25]  A. Gruverman,et al.  Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. , 2008, Physical review letters.

[26]  L. Martin,et al.  Switching kinetics in epitaxial BiFeO3 thin films , 2010 .

[27]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[28]  The piezoresponse force microscopy of surface layers and thin films: Effective response and resolution function , 2007, 0705.3449.

[29]  A. Gruverman,et al.  Anisotropy of domain growth in epitaxial ferroelectric capacitors , 2010 .

[30]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[31]  H. Wieder Model for Switching and Polarization Reversal in Colemanite , 1960 .

[32]  A. Gruverman,et al.  High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. , 2011, Nano letters.

[33]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[34]  Woo Lee,et al.  Individual switching of film-based nanoscale epitaxial ferroelectric capacitors , 2010 .

[35]  Coherent ferroelectric switching by atomic force microscopy , 2004, cond-mat/0401333.

[36]  Sang Mo Yang,et al.  Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors , 2011 .

[37]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures , 2009 .

[38]  N. Setter,et al.  Direct observation of inversely polarized frozen nanodomains in fatigued ferroelectric memory capacitors , 2003 .

[39]  M. Alexe,et al.  Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x , 2010 .

[40]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy in capacitor structures , 2008, 0801.2568.

[41]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[42]  A. Gruverman,et al.  Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets , 2006 .

[43]  C. Eom,et al.  Ferroelectric domain structure in epitaxial BiFeO3 films , 2005 .

[44]  M. Alexe,et al.  Reversible plasma switching in epitaxial BiFeO3 thin films , 2010 .

[45]  Yuichi Kurihashi,et al.  Scanning Nonlinear Dielectric Microscopy Nano-Science and Technology for Next Generation High Density Ferroelectric Data Storage , 2008 .

[46]  Marin Alexe,et al.  Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. , 2008, Nature nanotechnology.

[47]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[48]  Local polarization switching in the presence of surface-charged defects: microscopic mechanisms and piezoresponse force spectroscopy observations , 2007, 0711.1426.

[49]  Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors , 2007, 0707.3674.

[50]  Angus I. Kingon,et al.  Direct studies of domain switching dynamics in thin film ferroelectric capacitors , 2005 .

[51]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[52]  Peter Maksymovych,et al.  Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics , 2008 .

[53]  Paul Muralt,et al.  High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors , 1999 .

[54]  A. Tagantsev,et al.  Head-to-head and tail-to-tail 180 ° domain walls in an isolated ferroelectric , 2011, 1103.1571.

[55]  Yoshihiro Ishibashi,et al.  Note on Ferroelectric Domain Switching , 1971 .

[56]  Stephen Jesse,et al.  Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezorespon , 2010 .