A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography

The knowledge of measurement uncertainty is of great importance in conformance testing in production. The tolerance limit for production must be reduced by the amounts of measurement uncertainty to ensure that the parts are in fact within the tolerance. Over the last 5 years, industrial X-ray computed tomography (CT) has become an important technology for dimensional quality control. In this paper a computer simulation platform is presented which is able to investigate error sources in dimensional CT measurements. The typical workflow in industrial CT metrology is described and methods for estimating measurement uncertainties are briefly discussed. As we will show, the developed virtual CT (VCT) simulator can be adapted to various scanner systems, providing realistic CT data. Using the Monte Carlo method (MCM), measurement uncertainties for a given measuring task can be estimated, taking into account the main error sources for the measurement. This method has the potential to deal with all kinds of systematic and random errors that influence a dimensional CT measurement. A case study demonstrates the practical application of the VCT simulator using numerically generated CT data and statistical evaluation methods.

[1]  Jindong Wang,et al.  The evaluation of measurement uncertainty for laser tracker based on Monte Carlo method , 2011, 2011 IEEE International Conference on Mechatronics and Automation.

[2]  Stephen J. Glick,et al.  Computer simulation of CT mammography using a flat-panel imager , 2003, SPIE Medical Imaging.

[3]  Ehsan Samei,et al.  A method for modifying the image quality parameters of digital radiographic images. , 2003, Medical physics.

[4]  Leonhard Reindl,et al.  Einfluss der Bildqualität röntgentomographischer Abbildungen auf Koordinatenmessungen: Grundlagen, Messungen und Simulationen , 2011 .

[5]  Jörg Hoffmann,et al.  Probing Systems for Coordinate Measuring Machines , 2011 .

[6]  Gianfranco Genta,et al.  Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation , 2011 .

[7]  J Yorkston,et al.  Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. , 1997, Medical physics.

[8]  Peter Wenig,et al.  Examination of the Measurement Uncertainty on Dimensional Measurements by X-ray , 2006 .

[9]  Olaf Dössel,et al.  Bildgebende Verfahren in der Medizin , 2000 .

[10]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[11]  Nicolas Freud,et al.  A computer code to simulate X-ray imaging techniques , 2000 .

[12]  Jochen Peters,et al.  Werkstückeinfluss bei der Auswertung in der Koordinatenmesstechnik , 2010 .

[13]  H. Kunzmann,et al.  Assessment of Uncertainties in Dimensional Metrology by Monte Carlo Simulation: Proposal of a Modular and Visual Software , 2000 .

[14]  Wei R. Chen,et al.  Techniques to improve the accuracy and to reduce the variance in noise power spectrum measurement , 2002, IEEE Transactions on Biomedical Engineering.

[15]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[16]  Robert G. Wilhelm,et al.  Task Specific Uncertainty in Coordinate Measurement , 2001 .

[17]  H. Zaidi,et al.  A hybrid approach for fast simulation of X-ray computed tomography , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[18]  Robert Schmitt,et al.  Computed tomography for dimensional metrology , 2011 .

[19]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[20]  Robert Hocken,et al.  Measurement Uncertainty for Coordinate Measuring Systems , 2011 .

[21]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[22]  Christof Reinhart,et al.  INDUSTRIAL COMPUTER TOMOGRAPHY - A UNIVERSAL INSPECTION TOOL , 2008 .

[23]  Alexander Bai,et al.  Der Einsatz von Simulationen zur Bestimmung der Messunsicherheit von Interferometern (Assessment of the Measurement Uncertainty of Interferometers by Means of Simulation) , 2002 .

[24]  Karin Kniel,et al.  Achieving Traceability of Industrial Computed Tomography , 2010 .

[25]  G. Barnes,et al.  Semiempirical model for generating tungsten target x-ray spectra. , 1991, Medical physics.

[26]  D. Kisets Performance indication improvement for a proficiency testing , 2006 .

[27]  R. Füßl,et al.  Monte Carlo simulation to determine the measurement uncertainty of a metrological scanning probe microscope measurement , 2009, Scanning Microscopies.

[28]  Myoung-Hee Kim,et al.  Virtual X-ray imaging techniques in an immersive casting simulation environment , 2007 .

[29]  Ulrich Neitzel,et al.  Simple method for modulation transfer function determination of digital imaging detectors from edge images , 2003, SPIE Medical Imaging.

[30]  Jochen Hiller,et al.  Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications , 2012 .

[31]  H. Levine Medical Imaging , 2010, Annals of Biomedical Engineering.