Dielectric omnidirectional visible reflector.

We demonstrate the fabrication of an all-dielectric omnidirectional mirror for visible frequencies. The dielectric reflector consists of a stack of 19 alternating layers of tin (IV) sulfide and silica. Using a combination of thermal evaporation (for tin sulfide) and thick electron-beam evaporation (for silica), we have achieved a refractive-index contrast of 2.6/1.46 , one of the highest refractive-index contrasts demonstrated in one-dimensional photonic bandgap systems designed for the visible frequency range. The tin sulfide-silica material system developed allowed the formation of a broadband visible reflector with an omnidirectional range greater than 10%. Possible applications of the system include efficient reflectors, high-frequency waveguides for communications and power delivery, and high- Q cavities.