Three mathematical formalisms for discrete time linear feedback systems

The Georgiou Smith paradox is an inconsistency that occurs when the class of signals of a conventional mathematical formalism for systems theory is extended to double sided signals. In this work we introduce three different mathematical formalisms in order to recover consistency. The final one, the framework using distributions, is proved to be consistent and to be suitable for the analysis of discrete time feedback systems.

[1]  B. Jacob An Operator Theoretical Approach Towards Systems over the Signal Space $ \ell_{2}\mathbb{(Z)} $ , 2003 .

[2]  Tryphon T. Georgiou,et al.  Intrinsic difficulties in using the doubly-infinite time axis for input-output control theory , 1995, IEEE Trans. Autom. Control..

[3]  Jonathan R. Partington,et al.  Linear Operators And Linear Systems , 2004 .

[4]  P. M. Makila,et al.  Convoluted double trouble , 2002 .

[5]  Pertti M. Mäkilä,et al.  On three puzzles in robust control , 2000, IEEE Trans. Autom. Control..

[6]  J. O'Reilly,et al.  Open-loop Unstable Feedback Systems with Double-Sided Inputs: an Explicit Demonstration of Self-Consistency , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Birgit Jacob,et al.  What Is the Better Signal Space for Discrete-Time Systems: ℓ2(ℤ) or ℓ2(ℕ0)? , 2004, SIAM J. Control. Optim..

[8]  Jonathan R. Partington,et al.  Graphs, closability, and causality of linear time-invariant discrete-time systems , 2000 .

[9]  Pertti M. Mäkilä,et al.  When is a linear convolution system stabilizable? , 2002, Syst. Control. Lett..

[10]  Pertti M. Mäkilä,et al.  Input-output stabilization of linear systems on /spl Zopf/ , 2004, IEEE Transactions on Automatic Control.

[11]  P. Mäkilä,et al.  Input-output stabilization on the doubly-infinite time axis , 2002 .

[12]  D. C. Champeney A handbook of Fourier theorems , 1987 .

[13]  R. Remmert,et al.  Theory of Complex Functions , 1990 .