Three mathematical formalisms for discrete time linear feedback systems
暂无分享,去创建一个
[1] B. Jacob. An Operator Theoretical Approach Towards Systems over the Signal Space $ \ell_{2}\mathbb{(Z)} $ , 2003 .
[2] Tryphon T. Georgiou,et al. Intrinsic difficulties in using the doubly-infinite time axis for input-output control theory , 1995, IEEE Trans. Autom. Control..
[3] Jonathan R. Partington,et al. Linear Operators And Linear Systems , 2004 .
[4] P. M. Makila,et al. Convoluted double trouble , 2002 .
[5] Pertti M. Mäkilä,et al. On three puzzles in robust control , 2000, IEEE Trans. Autom. Control..
[6] J. O'Reilly,et al. Open-loop Unstable Feedback Systems with Double-Sided Inputs: an Explicit Demonstration of Self-Consistency , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[7] Birgit Jacob,et al. What Is the Better Signal Space for Discrete-Time Systems: ℓ2(ℤ) or ℓ2(ℕ0)? , 2004, SIAM J. Control. Optim..
[8] Jonathan R. Partington,et al. Graphs, closability, and causality of linear time-invariant discrete-time systems , 2000 .
[9] Pertti M. Mäkilä,et al. When is a linear convolution system stabilizable? , 2002, Syst. Control. Lett..
[10] Pertti M. Mäkilä,et al. Input-output stabilization of linear systems on /spl Zopf/ , 2004, IEEE Transactions on Automatic Control.
[11] P. Mäkilä,et al. Input-output stabilization on the doubly-infinite time axis , 2002 .
[12] D. C. Champeney. A handbook of Fourier theorems , 1987 .
[13] R. Remmert,et al. Theory of Complex Functions , 1990 .