Plasmonics in argentene

Two-dimensional materials exhibit a fascinating range of electronic and photonic properties vital for nanophotonics, quantum optics and emerging quantum information technologies. Merging concepts from the fields of ab initio materials science and nanophotonics, there is now an opportunity to engineer new photonic materials whose optical, transport, and scattering properties are tailored to attain thermodynamic and quantum limits. Here, we present first-principles calculations predicting that Argentene, a single-crystalline hexagonal close-packed monolayer of Ag, can dramatically surpass the optical properties and electrical conductivity of conventional plasmonic materials. In the low-frequency limit, we show that the scattering rate and resistivity reduce by a factor of three compared to the bulk three-dimensional metal. Most importantly, the low scattering rate extends to optical frequencies in sharp contrast to e.g. graphene, whose scattering rate increase drastically in the near-infrared range due to optical-phonon scattering. Combined with an intrinsically high carrier density, this facilitates highly-confined surface plasmons extending to visible frequencies. We evaluate Argentene across three distinct figures of merit, spanning the spectrum of typical plasmonic applications; in each, Argentene outperforms the state-of-the-art. This unique combination of properties will make Argentene a valuable addition to the two-dimensional heterostructure toolkit for quantum electronic and photonic technologies.

[1]  F. Xia,et al.  Plasmonics in Atomically Thin Crystalline Silver Films. , 2019, ACS nano.

[2]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[3]  R. Sundararaman,et al.  The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges , 2018 .

[4]  R. Sundararaman,et al.  Microscopic origins of hydrodynamic transport in the type-II Weyl semimetal WP2 , 2018, Physical Review B.

[5]  D. Englund,et al.  Probing the ultimate plasmon confinement limits with a van der Waals heterostructure , 2018, Science.

[6]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[7]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[8]  R. Sundararaman,et al.  Hot carrier dynamics in plasmonic transition metal nitrides , 2018, 1802.00727.

[9]  B. Yakobson,et al.  Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. , 2017, Journal of the American Chemical Society.

[10]  M. Soljačić,et al.  Ultralight Angstrom-Scale Optimal Optical Reflectors , 2017 .

[11]  Kathleen A. Schwarz,et al.  JDFTx: Software for joint density-functional theory , 2017, SoftwareX.

[12]  M. Soljačić,et al.  Ultra-light \AA-scale Optimal Optical Reflectors , 2017, 1707.06717.

[13]  Steven G. Johnson,et al.  Limits to the Optical Response of Graphene and Two-Dimensional Materials. , 2017, Nano letters.

[14]  Jan Mertens,et al.  How Light Is Emitted by Plasmonic Metals. , 2017, Nano letters.

[15]  Marios Mattheakis,et al.  Quantum plasmons with optical-range frequencies in doped few-layer graphene , 2017, 1703.01558.

[16]  K. Thygesen,et al.  Band structure engineered layered metals for low-loss plasmonics , 2017, Nature communications.

[17]  T. Christensen From Classical to Quantum Plasmonics in Three and Two Dimensions , 2017 .

[18]  R. Sundararaman,et al.  Effects of Interlayer Coupling on Hot‐Carrier Dynamics in Graphene‐Derived van der Waals Heterostructures , 2016, 1612.08196.

[19]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[20]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[21]  Antti-Pekka Jauho,et al.  Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. , 2016, Physical review letters.

[22]  W. Goddard,et al.  Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. , 2016, Physical review letters.

[23]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[24]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[25]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[26]  Francois Gygi,et al.  Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..

[27]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[28]  F. J. García de abajo,et al.  Plasmonics in atomically thin materials. , 2014, Faraday discussions.

[29]  J. Khurgin Ultimate limit of field confinement by surface plasmon polaritons. , 2014, Faraday discussions.

[30]  F J García de Abajo,et al.  Tunable plasmons in atomically thin gold nanodisks , 2014, Nature Communications.

[31]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[32]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[33]  T. Stauber Plasmonics in Dirac systems: from graphene to topological insulators , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  J. Drucker,et al.  Tuning Ag/Si(100) island size, shape, and density , 2013 .

[35]  Marin Soljacic,et al.  Plasmons in Graphene: Fundamental Properties and Potential Applications , 2013, Proceedings of the IEEE.

[36]  Ravishankar Sundararaman,et al.  Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems , 2013, 1302.6204.

[37]  A. Ferreira,et al.  A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE , 2013, 1302.2317.

[38]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[39]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[40]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[41]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[42]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[43]  B. Hecht,et al.  Principles of Nano-Optics: Probe–sample distance control , 2006 .

[44]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[46]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[47]  W. Schneider,et al.  Growth study of silver on MgO(100)/Mo(100) , 1998 .

[48]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[51]  P. B. Allen Electron-Phonon Effects in the Infrared Properties of Metals , 1971 .

[52]  E. Economou Surface Plasmons in Thin Films , 1969 .

[53]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.