SSC21-WKII-09 HERON: Demonstrating a Novel Biological Platform for Small Satellite Missions

Long-duration deep space missions pose a significant health risk for both humans and their resident microorganisms. The GeneSat, PharmaSat and O/OREOS missions have previously explored biological questions regarding the effects of spaceflight on S. cerevisiase , B.subtilis , and E. coli . However, there currently exists both a knowledge and an accessibility gap in small satellite biological experiments. These payloads require precise instrumentation and complex platforms that are usually reserved for large research organizations. This makes it difficult for smaller organizations to perform biological research in low Earth orbit (LEO). To address these challenges, the University of Toronto Aerospace Team (UTAT) Space Systems Division is currently developing the HERON CubeSat. HERON houses a payload platform which measures the effects of the LEO environment on the gene expression and drug resistance of Candida albicans , a yeast commonly found in the human gut microbiome. Previous research has suggested that C. albicans might display increased pathogenicity and drug resistance in response to microgravity, which has important implications for long-duration human spaceflight. The yeast cells are housed in custom acrylic microfluidics chips containing 32 wells with channels for media and drug delivery. A measurement printed circuit board (PCB) contains custom optics capable of measuring minute changes in cell fluorescence. The entire payload stack is then housed in a temperature- and humidity-controlled 2U pressure vessel. Space Systems as a whole is an

Katie | Rocco | Joey | Reimer | Purohit | Nikoo | Karen J. Morenz Korol | R. Bansal | S. Khan | H. Arshad | Michelle J. Lin | Timothy Leung | Dylan Vogel | A. Mukkala | Kimberly Ren | Xi Lan | Yonglong Li | Eric van Velzen | Bruno | Almeida | Cassandra Chanen | Adyn Miles | A. Haydaroglu | Abdullah Gulab | Addy Bhatia | Alejandro | Duque | Alireza Nickooie | Ambrose Man | Americo Barros | Amna Zulfiqar | Amy Shi | Ana Quilumbango | Andrew Uderian | A. Xie | Arash Nourimand | Arfa Saif | Atharva Datar | Atharva Dighe | Aurora Nowicki | Avelyn Wong | Ben Kwashigah | B. Makarchuk | Benjamin W. Nero | B. Weng | Brandon Jasztrab | Brendan | Graham | Brenna Koehler | Brytni Richards | Charlotte Moraldo | C. Dunn | Cindy Y Li | Daniel Choi | Danylo Varshavsky | D. Sudarsan | E. M. Grande | Emma Belhadfa | Gabriel | Sher | H. Blinn | Haoran Wang | Hisham El-Halabi | Ibrahim Pervez | Jack Berezny | Jaden | James William Sheridan | J. Rock | J. Nicholls | Jeffrey Osborne | Jingwen Gong | J. Hon | Capan | Justin Smeal | K. Ramji | Katherine Le | Katie Gwozdecky | Harris | Keenan Burnett | Kelly Chu | K.F. Shek | Laura Tang | L. Faust | Liza Zoubakina | Louis | Pahlavi | Luca Talamo | Mahnoor Mehboob | Maria Tkatchenko | Marieke de Korte | Mason Lorch | M. Silverman | Minchan Kim | Mohamed Hirole | Mubtaseem Zaman | Givehchian | N. Wang | Ozan Coskun | P. Samaha | Prachi K. Sukhnani | Pranshu Malik | K. Priyank | R. Sinnatamby | Rivka Shemesh | Ridwan Howlader | Rima Uraiqat | R. Khan | Ruan | R. Liang | Russel Brown | Ryan Ngai | Ryan Song | Sam Looper | S. Murray | Samir Alazzam | Shimon Smith | Shreya Parikh | Siddharth Mahendraker | S. Siddharth | Gopalan | Sonali Dey | Stephen C L Lau | Suzanne Chung | Suraj Pararusam | Tahreem Butt | Tala A. Gharbiah | Tareq Deaibes | Tejvir Singh Binepal | Thomas Liu | T. Leung | Timothy | Yeung | Uran Onuk | Utkarsh Mali | Vandod Farhadi | Victor Nechita | W. Ferrie | Zeng Zeng | Jeffrey R. Osborne | S. Lau | K. Shek | Noah Wang | S. Chung | T. Butt | J. Sheridan | E. V. Velzen | O. Coskun | Rohit Bansal | Bo Weng | E. Belhadfa | Haoran Wang | M. D. Korte

[1]  André Antunes,et al.  Microbial Pathogenicity in Space , 2021, Pathogens.

[2]  J. Allen,et al.  Macrophages in microgravity: the impact of space on immune cells , 2021, NPJ microgravity.

[3]  Mathias Basner,et al.  Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration , 2020, Cell.

[4]  Christopher E. Mason,et al.  Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact , 2020, Cell.

[5]  S. Turroni,et al.  Gut Microbiome and Space Travelers’ Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions , 2020, Frontiers in Physiology.

[6]  T. Akiyama,et al.  How does spaceflight affect the acquired immune system? , 2020, npj Microgravity.

[7]  Michael R. Padgen,et al.  EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. , 2020, Life sciences in space research.

[8]  John P. Marken,et al.  Robust estimation of bacterial cell count from optical density , 2019, bioRxiv.

[9]  Ali Haydaroglu,et al.  Systems Engineering Challenges and Strategies in a Student Satellite Design Team: HERON – A Case Study , 2019, 2019 International Symposium on Systems Engineering (ISSE).

[10]  D. Pierson,et al.  Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome , 2019, Scientific Reports.

[11]  Clarence Sams,et al.  Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions , 2018, Front. Immunol..

[12]  H. Lorenzi,et al.  The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions , 2016, Frontiers in Astronomy and Space Sciences.

[13]  Clarence Sams,et al.  Alterations in adaptive immunity persist during long-duration spaceflight , 2015, npj Microgravity.

[14]  Scott M Smith,et al.  Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. , 2014, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[15]  Diane O. Inglis,et al.  Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans , 2013, PloS one.

[16]  D. Pierson,et al.  Immune System Dysregulation Occurs During Short Duration Spaceflight On Board the Space Shuttle , 2013, Journal of Clinical Immunology.

[17]  W. Nicholson,et al.  The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. , 2011, Astrobiology.

[18]  A. Bakhrouf,et al.  Starvation survival of Candida albicans in various water microcosms , 2011, Journal of basic microbiology.

[19]  Clarence Sams,et al.  Immune system dysregulation during spaceflight: clinical risk for exploration‐class missions , 2009, Journal of leukocyte biology.

[20]  Sara D. Altenburg,et al.  Increased Filamentous Growth of Candida albicans in Simulated Microgravity , 2008, Genom. Proteom. Bioinform..

[21]  L. Giovangrandi,et al.  Autonomous Genetic Analysis System to Study Space Effects on Microorganisms: Results from Orbit , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[22]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[23]  G. Ayliffe,et al.  The survival of Candida albicans in moist and dry environments. , 1980, The Journal of hospital infection.

[24]  Katie Gwozdecky,et al.  Alternative Launch Funding for Student Nanosatellite Missions , 2018 .

[25]  Ming Tan,et al.  BioSentinel: Monitoring DNA Damage Repair Beyond Low Earth Orbit on a 6U Nanosatellite , 2014 .

[26]  C. Friedericks,et al.  The O/OREOS mission—Astrobiology in low Earth orbit , 2014 .

[27]  Stevan Spremo,et al.  E. coli AntiMicrobial Satellite (EcAMSat): Science Payload System Development and Test , 2014 .

[28]  A. Kudlicki,et al.  Pharmasat: Drug dose dependence results from an autonomous microsystem-based small satellite in low earth orbit , 2010 .

[29]  John T. Shepard,et al.  Initial Flight Results from the PharmaSat Biological Microsatellite Mission , 2009 .

[30]  Paul Mahacek,et al.  Flight Results from the GeneSat-1 Biological Microsatellite Mission , 2007 .

[31]  A. Ricco,et al.  The GeneSat-1 Microsatellite MissionA Challenge in Small Satellite Design , 2006 .