Applications of graph spectra

[1]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  T. Schlick,et al.  Candidates for novel RNA topologies. , 2004, Journal of molecular biology.

[3]  Volker Pernice,et al.  Quantum transport on small-world networks: a continuous-time quantum walk approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Zhuzhi Yuan,et al.  Finding and evaluating the hierarchical structure in complex networks , 2007 .

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  Bolian Liu,et al.  On the nullity of bicyclic graphs , 2005 .

[7]  Juan Carlos Seck Tuoh Mora,et al.  SPECTRAL PROPERTIES OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA , 2003 .

[8]  R. Bapat,et al.  A Simple Method for Computing Resistance Distance , 2003 .

[9]  Federico Echenique,et al.  A Measure of Segregation Based on Social Interactions , 2007 .

[10]  A. Arenas,et al.  Synchronization processes in complex networks , 2006, nlin/0610057.

[11]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Bolian Liu,et al.  On the nullity of graphs , 2007 .

[13]  G. Segal Semiempirical Methods of Electronic Structure Calculation , 1977 .

[14]  E. Ott,et al.  Approximating the largest eigenvalue of network adjacency matrices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Irene Sciriha,et al.  Trees with maximum nullity , 2005 .

[16]  D. Janzing Spin- 1 ∕ 2 particles moving on a two-dimensional lattice with nearest-neighbor interactions can realize an autonomous quantum computer , 2005, quant-ph/0506270.

[17]  R. Andrade,et al.  Neighborhood properties of complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  C. A. Coulson,et al.  Note on the method of molecular orbitals , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Ernesto Estrada Spectral theory of networks : from biomolecular to ecological systems , 2009 .

[20]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[21]  Edward Ott,et al.  Characterizing the dynamical importance of network nodes and links. , 2006, Physical review letters.

[22]  Dragoš Cvetković,et al.  The algebraic multiplicity of the number zero in the spectrum of a bipartite graph , 1972 .

[23]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[24]  Michael Doob,et al.  Spectra of graphs , 1980 .

[25]  Michael Small,et al.  Contraction stability and transverse stability of synchronization in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Gregor Tanner,et al.  Families of Line-Graphs and Their Quantization , 2001, nlin/0110043.

[27]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Michael J. S. Dewar,et al.  The molecular orbital theory of organic chemistry , 1969 .

[29]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).