Anti-AQP4 autoantibodies promote ATP release from astrocytes and induce mechanical pain in rats

[1]  Y. Itoyama,et al.  Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders. , 2021, Brain : a journal of neurology.

[2]  Y. Nakatsuji,et al.  Mitochondrial DNA enhance innate immune responses in neuromyelitis optica by monocyte recruitment and activation , 2020, Scientific Reports.

[3]  R. Zhou,et al.  DAMP-sensing receptors in sterile inflammation and inflammatory diseases , 2019, Nature Reviews Immunology.

[4]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[5]  Fen Li,et al.  Interleukin‐1beta released by microglia initiates the enhanced glutamatergic activity in the spinal dorsal horn during paclitaxel‐associated acute pain syndrome , 2018, Glia.

[6]  Bernhard Hemmer,et al.  Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders , 2019, The Lancet Neurology.

[7]  K. Fujihara,et al.  Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat , 2018, Acta Neuropathologica.

[8]  Eun Woo Son,et al.  iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data , 2018, BMC Bioinformatics.

[9]  Y. Qadri,et al.  Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain , 2018, Neuron.

[10]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[11]  Mikaël M. Martino,et al.  The ATP Transporter VNUT Mediates Induction of Dectin-1-Triggered Candida Nociception , 2018, iScience.

[12]  Y. Nakatsuji,et al.  Cerebrospinal fluid mitochondrial DNA in neuromyelitis optica spectrum disorder , 2018, Journal of Neuroinflammation.

[13]  H. Tozaki-Saitoh,et al.  Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain , 2016, Nature Communications.

[14]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[15]  L. Vaca,et al.  The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. , 2015, Biochemical and biophysical research communications.

[16]  A. Traboulsee,et al.  International consensus diagnostic criteria for neuromyelitis optica spectrum disorders , 2015, Neurology.

[17]  Loren J. Martin,et al.  Different immune cells mediate mechanical pain hypersensitivity in male and female mice , 2015, Nature Neuroscience.

[18]  J. Sandkühler,et al.  Pain in neuromyelitis optica—prevalence, pathogenesis and therapy , 2014, Nature Reviews Neurology.

[19]  Xisheng Yan,et al.  Interleukin‐1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C , 2014, Glia.

[20]  T. Mak,et al.  Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain , 2014, Nature Communications.

[21]  Galina Polekhina,et al.  The identification of mitochondrial DNA variants in glioblastoma multiforme , 2014, Acta neuropathologica communications.

[22]  Maiken Nedergaard,et al.  Glia and pain: Is chronic pain a gliopathy? , 2013, PAIN®.

[23]  H. Tozaki-Saitoh,et al.  P2X4 receptors and neuropathic pain , 2013, Front. Cell. Neurosci..

[24]  M. Boggild,et al.  The epidemiology of neuromyelitis optica amongst adults in the Merseyside county of United Kingdom , 2013, Journal of Neurology.

[25]  K. Fujihara,et al.  Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats , 2013, Acta neuropathologica communications.

[26]  M. Tsukimoto,et al.  P2X4 receptor regulates P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells. , 2013, Biochemical and biophysical research communications.

[27]  M. Mori,et al.  CSF high-mobility group box 1 is associated with intrathecal inflammation and astrocytic damage in neuromyelitis optica , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[28]  A. Cross,et al.  Association of neuromyelitis optica with severe and intractable pain. , 2012, Archives of neurology.

[29]  K. Ozato,et al.  IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype , 2012, Cell reports.

[30]  C. Hulsebosch,et al.  Spatial and temporal activation of spinal glial cells: Role of gliopathy in central neuropathic pain following spinal cord injury in rats , 2012, Experimental Neurology.

[31]  H. Yamanaka,et al.  Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model , 2011, Neuroscience Letters.

[32]  B. Hemmer,et al.  Intrathecal pathogenic anti–aquaporin‐4 antibodies in early neuromyelitis optica , 2009, Annals of neurology.

[33]  Y. Itoyama,et al.  Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo , 2009, Annals of neurology.

[34]  S. Sakoda,et al.  Neuromyelitis optica: Passive transfer to rats by human immunoglobulin. , 2009, Biochemical and biophysical research communications.

[35]  D. Górecki,et al.  Analysis of Assembly and Trafficking of Native P2X4 and P2X7 Receptor Complexes in Rodent Immune Cells* , 2009, Journal of Biological Chemistry.

[36]  K. Fujihara,et al.  Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum , 2009, Neuroreport.

[37]  B. Weinshenker,et al.  The spectrum of neuromyelitis optica , 2007, The Lancet Neurology.

[38]  S. Maeda,et al.  Intrathecal administration of ATP produces long-lasting allodynia in rats: Differential mechanisms in the phase of the induction and maintenance , 2007, Neuroscience.

[39]  S. Koizumi,et al.  P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury , 2003, Nature.

[40]  Y. Nakatsuji,et al.  Density dependent modulation of cell cycle protein expression in astrocytes , 2001, Journal of neuroscience research.

[41]  C. Woolf,et al.  Spared nerve injury: an animal model of persistent peripheral neuropathic pain , 2000, Pain.

[42]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..