Crayfish Neuromuscular Junction Release by Activating a Calcium Influx Pathway at -Latrocrustatoxin Increases Neurotransmitter α

[1]  T. Südhof,et al.  Neurexins Are Functional α-Latrotoxin Receptors , 1999, Neuron.

[2]  R. Holz,et al.  Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. , 1999, The Journal of biological chemistry.

[3]  T. Südhof,et al.  alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. , 1998, The Journal of biological chemistry.

[4]  S. Boehm,et al.  Presynaptic Inhibition by Concanavalin A: Are α‐Latrotoxin Receptors Involved in Action Potential‐Dependent Transmitter Release? , 1998, Journal of neurochemistry.

[5]  T. Südhof,et al.  α‐Latrotoxin action probed with recombinant toxin: receptors recruit α‐latrotoxin but do not transduce an exocytotic signal , 1998, The EMBO journal.

[6]  E. Grishin Black widow spider toxins: the present and the future. , 1998, Toxicon : official journal of the International Society on Toxinology.

[7]  H. Kornblum,et al.  Electrical and optical monitoring of α-latrotoxin action at Drosophila neuromuscular junctions , 1998, Neuroscience.

[8]  S. Misler,et al.  α-Latrotoxin Alters Spontaneous and Depolarization-Evoked Quantal Release from Rat Adrenal Chromaffin Cells: Evidence for Multiple Modes of Action , 1998, The Journal of Neuroscience.

[9]  G. Wilkin,et al.  Vesicle exocytosis stimulated by α‐latrotoxin is mediated by latrophilin and requires both external and stored Ca2+ , 1998, The EMBO journal.

[10]  S. Misler,et al.  α-Latrotoxin-induced quantal release of catecholamines from rat adrenal chromaffin cells , 1998, Brain Research.

[11]  C. Wollheim,et al.  Ca2+‐independent insulin exocytosis induced by α‐latrotoxin requires latrophilin, a G protein‐coupled receptor , 1998, The EMBO journal.

[12]  E. Grishin,et al.  α-Latrotoxin Receptor, Latrophilin, Is a Novel Member of the Secretin Family of G Protein-coupled Receptors* , 1997, The Journal of Biological Chemistry.

[13]  Alain Marty,et al.  Heterogeneity of Functional Synaptic Parameters among Single Release Sites , 1997, Neuron.

[14]  A. R. Little,et al.  α-Latrotoxin Stimulates Exocytosis by the Interaction with a Neuronal G-Protein-Coupled Receptor , 1997, Neuron.

[15]  H Parnas,et al.  Simultaneous Measurement of Intracellular Ca2+ and Asynchronous Transmitter Release from the same Crayfish Bouton , 1997, The Journal of physiology.

[16]  A. B. Smith,et al.  Multiple calcium channels control neurotransmitter release from rat postganglionic sympathetic nerve terminals. , 1997, The Journal of physiology.

[17]  B. Gähwiler,et al.  Calcium-independent actions of alpha-latrotoxin on spontaneous and evoked synaptic transmission in the hippocampus. , 1996, Journal of neurophysiology.

[18]  M. Brodwick,et al.  Calcium currents, transmitter release and facilitation of release at voltage‐clamped crayfish nerve terminals. , 1996, The Journal of physiology.

[19]  D. Barnett,et al.  Single-cell measurements of quantal secretion induced by α-latrotoxin from rat adrenal chromaffin cells: dependence on extracellular Ca2+ , 1996, Pflügers Archiv - European Journal of Physiology.

[20]  L. Miller,et al.  Role of Receptor Phosphorylation in Desensitization and Internalization of the Secretin Receptor* , 1996, The Journal of Biological Chemistry.

[21]  O. Shamotienko,et al.  Isolation and Biochemical Characterization of a Ca2+-independent α-Latrotoxin-binding Protein* , 1996, The Journal of Biological Chemistry.

[22]  George J. Augustine,et al.  Adaptation of Ca2+-Triggered Exocytosis in Presynaptic Terminals , 1996, Neuron.

[23]  R. Tsien,et al.  Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. , 1996, Chemistry & biology.

[24]  I. Dulubova,et al.  Cloning and structure of delta-latroinsectotoxin, a novel insect-specific member of the latrotoxin family: functional expression requires C-terminal truncation. , 1996, The Journal of biological chemistry.

[25]  A. B. Smith,et al.  ω-conotoxin GVIA-resistant neurotransmitter release in postganglionic sympathetic nerve terminals , 1996, Neuroscience.

[26]  T. Südhof,et al.  High Affinity Binding of α-Latrotoxin to Recombinant Neurexin Iα (*) , 1995, The Journal of Biological Chemistry.

[27]  R. Llinás,et al.  Different calcium channels mediate transmitter release evoked by transient or sustained depolarization at mammalian symphatetic ganglia , 1995, Neuroscience.

[28]  E. Grishin,et al.  Interaction of α-latroinsectotoxin from Latrodectus mactans venom with bilayer lipid membranes , 1995 .

[29]  E. Daniel,et al.  Different mechanisms can activate Ca2+ entrance via cation currents in endothelial cells. , 1994, Life sciences.

[30]  M. Charlton,et al.  Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses. , 1994, Journal of neurophysiology.

[31]  E. Grishin,et al.  Mechanism of α-latrotoxin action as revealed by patch-clamp experiments onXenopus oocytes injected with rat brain messenger RNA , 1994, Neuroscience.

[32]  F. Clarac,et al.  P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Blundon,et al.  Residual free calcium is not responsible for facilitation of neurotransmitter release. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  V. O'Connor,et al.  On the structure of the ‘synaptosecretosome’ Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex , 1993, FEBS letters.

[35]  I. Dulubova,et al.  Cloning and structural analysis of alpha-latroinsectotoxin cDNA. Abundance of ankyrin-like repeats. , 1993, European journal of biochemistry.

[36]  T. Südhof,et al.  Interaction of synaptotagmin with the cytoplasmic domains of neurexins , 1993, Neuron.

[37]  J. Vansteveninck,et al.  Strontium and barium induce exocytosis in electropermeabilized neutrophils. , 1993, Biochimica et biophysica acta.

[38]  E. Grishin,et al.  Selective presynaptic insectotoxin (α-latroinsectotoxin) isolated from black widow spider venom , 1992, Neuroscience.

[39]  R. Dingledine,et al.  Gadolinium block of calcium channels: influence of bicarbonate , 1991, Brain Research.

[40]  E. Grishin,et al.  Expression of receptor for α-latrotoxin in Xenopus oocytes after injection of mRNA from rat brain , 1990, Neuroscience.

[41]  J. Meldolesi,et al.  Mode of action of alpha-latrotoxin: role of divalent cations in Ca2(+)-dependent and Ca2(+)-independent effects mediated by the toxin. , 1990, Molecular pharmacology.

[42]  I. Dulubova,et al.  Cloning and structure of cDNA encoding α‐latrotoxin from black widow spider venom , 1990, FEBS letters.

[43]  A. Chen,et al.  Secretin internalization and adenosine 3',5'-monophosphate levels in pancreatic acinar cells. , 1989, Endocrinology.

[44]  H. Scheer Interactions Between α‐Latrotoxin and Trivalent Cations in Rat Striatal Synaptosomal Preparations , 1989, Journal of neurochemistry.

[45]  Y. Kuroda,et al.  Maitotoxin-induced membrane current in neuroblastoma cells , 1987, Brain Research.

[46]  H. Atwood,et al.  Long-term facilitation alters transmitter releasing properties at the crayfish neuromuscular junction. , 1986, Journal of neurophysiology.

[47]  J. Meldolesi,et al.  alpha Latrotoxin of the black widow spider venom opens a small, non-closing cation channel. , 1986, Biochemical and biophysical research communications.

[48]  H. Atwood,et al.  Presynaptic membrane potential and transmitter release at the crayfish neuromuscular junction. , 1984, Journal of neurophysiology.

[49]  J. Meldolesi,et al.  The effect of α-latrotoxin on the neurosecretory PC12 cell line: Studies on toxin binding and stimulation of transmitter release , 1983, Neuroscience.

[50]  A. Mauro,et al.  The ionic dependence of black widow spider venom action at the stretch receptor neuron and neuromuscular junction of crustaceans. , 1982, Journal of neurobiology.

[51]  E. Florey,et al.  The innervation pattern of crustacean skeletal muscle , 1982, Cell and Tissue Research.

[52]  J. Meldolesi Studies on α‐Latrotoxin Receptors in Rat Brain Synaptosomes: Correlation Between Toxin Binding and Stimulation of Transmitter Release , 1982, Journal of neurochemistry.

[53]  H. Atwood,et al.  Lobster neuromuscular junctions treated with black widow spider venom: Correlation between ultrastructure and physiology , 1980, Journal of neurocytology.

[54]  A. Mauro,et al.  Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions , 1980, Nature.

[55]  L. Rubin,et al.  Effect of concanavalin A on black widow spider venom activity at the neuromuscular junction: Implications for mechanisms of venom action , 1978, Brain Research.

[56]  S. Rufini,et al.  Concanavalin a blocks black widow spider toxin stimulation of transmitter release from synaptosomes , 1978, FEBS letters.

[57]  P. Siekevitz,et al.  The effect of the purified major protein factor (α-latrotoxin) of black widow spider venom on the release of acetylcholine and norepinephrine from mouse cerebral cortex slices , 1978, Brain Research.

[58]  P. Siekevitz,et al.  Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions , 1976, The Journal of cell biology.

[59]  J. D. Del Castillo,et al.  Release of packets of acetylcholine and synaptic vesicle elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin. , 1975, Life sciences.

[60]  P. Usherwood,et al.  Action of Black Widow Spider Venom on an Aminergic Synapse , 1973, Nature.

[61]  A. Mauro,et al.  Effect of Black Widow Spider Venom on the Lobster Neuromuscular Junctions , 1972, The Journal of general physiology.

[62]  A. Takeuchi,et al.  A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish , 1969, The Journal of physiology.

[63]  A. Grasso,et al.  Effect of Latrodectus mactans tredecimguttatus venom on the crayfish stretch receptor neurone. , 1967, Toxicon : official journal of the International Society on Toxinology.

[64]  L. Maga,et al.  Permeation of divalent cations through α-latrotoxin channels in lipid bilayers: steady-state current-voltage relationships , 2005, The Journal of Membrane Biology.

[65]  Volkova Tm,et al.  [Molecular cloning and primary structure of cDNA fragment for alpha-latrocrustatoxin from black widow spider venom]. , 1999, Bioorganicheskaia khimiia.

[66]  N. I. Artiukhina,et al.  Effects of black widow spider venom and latrocrustatoxin on crustacean nerve cells: electrophysiological and ultrastructural study. , 1997, General pharmacology.

[67]  H. Robinson,et al.  Spider toxin and the glutamate receptors. , 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[68]  J. Meldolesi,et al.  α-Latrotoxin and related toxins , 1989 .

[69]  R. Eckert,et al.  Divalent cations differentially support transmitter release at the squid giant synapse. , 1984, The Journal of physiology.

[70]  W. P. Hurlbut,et al.  Use of black widow spider venom to study the release of neurotransmitters. , 1979, Advances in cytopharmacology.