The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results

[1]  M. Montemor,et al.  Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid , 2016 .

[2]  Diego Mantovani,et al.  Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy , 2016, Proceedings of the National Academy of Sciences.

[3]  T. Cheng,et al.  Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy. , 2015, Biomaterials.

[4]  Jörg F. Löffler,et al.  Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo , 2015 .

[5]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[6]  G. Yuan,et al.  Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair. , 2014, ACS applied materials & interfaces.

[7]  S. Cofer,et al.  Comparative analysis of fracture characteristics of the developing mandible: the Mayo Clinic experience. , 2014, International journal of pediatric otorhinolaryngology.

[8]  Ke Yang,et al.  Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. , 2014, Acta biomaterialia.

[9]  W. Ding,et al.  Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating. , 2013, Materials science & engineering. C, Materials for biological applications.

[10]  Andrea Meyer-Lindenberg,et al.  Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. , 2013, Acta biomaterialia.

[11]  Andrej Atrens,et al.  The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91 , 2013 .

[12]  P. Uggowitzer,et al.  In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. , 2013, Acta biomaterialia.

[13]  Yufeng Zheng,et al.  In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. , 2012, Acta biomaterialia.

[14]  W. Ding,et al.  Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. , 2012, Journal of the mechanical behavior of biomedical materials.

[15]  W. Ding,et al.  Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy. , 2012, Journal of the mechanical behavior of biomedical materials.

[16]  M. Störmer,et al.  Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. , 2010, Acta biomaterialia.

[17]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[18]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[19]  M. Eijken Human Osteoblast Differentiation and Bone Formation: Growth Factors, Hormones and Regulatory Networks , 2007 .

[20]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[21]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[22]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[23]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[24]  S. Teitelbaum,et al.  Bone resorption by osteoclasts. , 2000, Science.

[25]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.