VHL, the story of a tumour suppressor gene

[1]  J. Brugarolas Molecular genetics of clear-cell renal cell carcinoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  G. Mills,et al.  Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. , 2014, Cancer research.

[3]  N. Rosenfeld,et al.  Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma , 2014, Genes, chromosomes & cancer.

[4]  J. Palmblad,et al.  Genetic Basis of Congenital Erythrocytosis: Mutation Update and Online Databases , 2014, Human mutation.

[5]  F. Girodon,et al.  Molecular study of congenital erythrocytosis in 70 unrelated patients revealed a potential causal mutation in less than half of the cases (Where is/are the missing gene(s)?) , 2013, European journal of haematology.

[6]  M. Climent,et al.  Prospective study assessing hypoxia-related proteins as markers for the outcome of treatment with sunitinib in advanced clear-cell renal cell carcinoma. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[7]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[8]  H. Aburatani,et al.  Integrated molecular analysis of clear-cell renal cell carcinoma , 2013, Nature Genetics.

[9]  S. Signoretti,et al.  The Role of Aberrant VHL/HIF Pathway Elements in Predicting Clinical Outcome to Pazopanib Therapy in Patients with Metastatic Clear-Cell Renal Cell Carcinoma , 2013, Clinical Cancer Research.

[10]  W. Krek,et al.  Genetic deletion of the long isoform of the von Hippel-Lindau tumour suppressor gene product alters microtubule dynamics. , 2013, European journal of cancer.

[11]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[12]  J. Prchal,et al.  Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer. , 2013, Blood.

[13]  Han Liu,et al.  Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. , 2013, European urology.

[14]  Gang Wang,et al.  Activation of HIF2α in kidney proximal tubule cells causes abnormal glycogen deposition but not tumorigenesis. , 2013, Cancer research.

[15]  C. Sander,et al.  Adverse Outcomes in Clear Cell Renal Cell Carcinoma with Mutations of 3p21 Epigenetic Regulators BAP1 and SETD2: A Report by MSKCC and the KIRC TCGA Research Network , 2013, Clinical Cancer Research.

[16]  S. Nekhai,et al.  The phenotype of polycythemia due to Croatian homozygous VHL (571C>G:H191D) mutation is different from that of Chuvash polycythemia (VHL 598C>T:R200W) , 2013, Haematologica.

[17]  Rui Chen,et al.  Allosteric Inhibition of Hypoxia Inducible Factor-2 with Small Molecules , 2013, Nature chemical biology.

[18]  M. Malumbres,et al.  HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. , 2012, Molecular cell.

[19]  W. Linehan,et al.  Lack of a functional VHL gene product sensitizes renal cell carcinoma cells to the apoptotic effects of the protein synthesis inhibitor verrucarin A. , 2012, Neoplasia.

[20]  Klaas Kok,et al.  Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development , 2012, Human mutation.

[21]  N. Grishin,et al.  BAP1 loss defines a new class of renal cell carcinoma , 2012, Nature Genetics.

[22]  T. Cenci,et al.  Von hippel-lindau disease and erythrocytosis. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  C. Porta,et al.  Treatment selection in metastatic renal cell carcinoma: expert consensus , 2012, Nature Reviews Clinical Oncology.

[24]  G. Semenza Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. , 2012, Trends in pharmacological sciences.

[25]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[26]  G. Mills,et al.  Agents That Stabilize Mutated von Hippel–Lindau (VHL) Protein , 2012, Journal of biomolecular screening.

[27]  G. Mills,et al.  Results of a high-throughput screen to identify compounds that modulate VHL proteostasis. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  M. Zhou,et al.  The von Hippel–Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C , 2012, Oncogene.

[29]  Yasushi Totoki,et al.  Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. , 2012, Genome research.

[30]  Huanming Yang,et al.  Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma , 2011, Nature Genetics.

[31]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[32]  Gang Wang,et al.  Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. , 2011, Cancer research.

[33]  吳國瑞,et al.  Interplay between HDAC3 and WDR5 Is Essential for Hypoxia-Induced Epithelial-Mesenchymal Transition , 2011 .

[34]  G. Semenza Oxygen sensing, homeostasis, and disease. , 2011, The New England journal of medicine.

[35]  P. Sutphin,et al.  Targeting GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality , 2011, Science Translational Medicine.

[36]  William Y. Kim,et al.  Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia , 2011, Nature Medicine.

[37]  H. Moch,et al.  VHL gene mutations and their effects on hypoxia inducible factor HIFα: identification of potential driver and passenger mutations. , 2011, Cancer research.

[38]  Jiannis Ragoussis,et al.  High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. , 2011, Blood.

[39]  Rameen Beroukhim,et al.  Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. , 2011, Cancer discovery.

[40]  S. Richard,et al.  von Hippel–Lindau disease: A clinical and scientific review , 2011, European Journal of Human Genetics.

[41]  K. Gustafson,et al.  Identification and evaluation of soft coral diterpenes as inhibitors of HIF-2α induced gene expression. , 2011, Bioorganic & medicinal chemistry letters.

[42]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[43]  G. Semenza mechanisms of disease Oxygen Sensing , Homeostasis , and Disease , 2011 .

[44]  W. Linehan,et al.  A new hypoxia inducible factor-2 inhibitory pyrrolinone alkaloid from roots and stems of Piper sarmentosum. , 2011, Chemical & pharmaceutical bulletin.

[45]  Gaudenz Danuser,et al.  Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability , 2010, The Journal of cell biology.

[46]  S. Welford,et al.  Renal Oxygenation Suppresses VHL Loss-Induced Senescence That Is Caused by Increased Sensitivity to Oxidative Stress , 2010, Molecular and Cellular Biology.

[47]  R. Bukowski,et al.  Biomarkers Predicting Outcome in Patients with Advanced Renal Cell Carcinoma: Results from Sorafenib Phase III Treatment Approaches in Renal Cancer Global Evaluation Trial , 2010, Clinical Cancer Research.

[48]  S. Lowe,et al.  HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase , 2010, Nature.

[49]  Gerben Duns,et al.  Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. , 2010, Cancer research.

[50]  A. V. D. van den Ouweland,et al.  Genetic analysis of von Hippel‐Lindau disease , 2010, Human mutation.

[51]  L. Gossage,et al.  Alterations in VHL as potential biomarkers in renal-cell carcinoma , 2010, Nature Reviews Clinical Oncology.

[52]  E. Morrisey,et al.  The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. , 2010, The Journal of clinical investigation.

[53]  A. Pantuck,et al.  NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas. , 2010, Cancer research.

[54]  Gurpreet W. Tang,et al.  Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes , 2009, Nature.

[55]  W. Gregory,et al.  Analysis of VHL Gene Alterations and their Relationship to Clinical Parameters in Sporadic Conventional Renal Cell Carcinoma , 2009, Clinical Cancer Research.

[56]  M. Ohh,et al.  Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. , 2009, Cancer research.

[57]  G. Calin,et al.  Emerging roles of microRNAs in the molecular responses to hypoxia. , 2009, Current pharmaceutical design.

[58]  Huafeng Zhang,et al.  Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization , 2009, Proceedings of the National Academy of Sciences.

[59]  A. McNeill,et al.  Genotype–phenotype correlations in VHL exon deletions , 2009, American journal of medical genetics. Part A.

[60]  H. Moch,et al.  VHL loss causes spindle misorientation and chromosome instability , 2009, Nature Cell Biology.

[61]  M. Zeegers,et al.  Analysis of Germline Variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in Familial and Sporadic Renal Cell Carcinoma , 2009, PloS one.

[62]  F. V. van Eeden,et al.  Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. , 2009, Blood.

[63]  E. Rankin,et al.  Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism , 2009, Molecular and Cellular Biology.

[64]  H. Neumann,et al.  Alu‐Alu recombination underlies the vast majority of large VHL germline deletions: Molecular characterization and genotype–phenotype correlations in VHL patients , 2009, Human mutation.

[65]  Bin Tean Teh,et al.  Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer , 2009, Nature Genetics.

[66]  Wei Li,et al.  Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis , 2009, Proceedings of the National Academy of Sciences.

[67]  D. Jacqmin,et al.  von Hippel-Lindau tumor suppressor gene-dependent mRNA stabilization of the survival factor parathyroid hormone-related protein in human renal cell carcinoma by the RNA-binding protein HuR. , 2009, Carcinogenesis.

[68]  Kevin H. Gardner,et al.  Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor , 2009, Proceedings of the National Academy of Sciences.

[69]  D. Shukla,et al.  Regulation of renal epithelial tight junctions by the von Hippel-Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. , 2008, Molecular biology of the cell.

[70]  K. Flaherty,et al.  HIF- α effects on c-Myc distinguish two subtypes of sporadic VHL -deficient clear cell renal carcinoma , 2009 .

[71]  Jens Vilstrup Johansen,et al.  The Histone Demethylases JMJD1A and JMJD2B Are Transcriptional Targets of Hypoxia-inducible Factor HIF* , 2008, Journal of Biological Chemistry.

[72]  T. Golub,et al.  Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing. , 2008, Molecular cell.

[73]  P. Ratcliffe,et al.  Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. , 2008, The Biochemical journal.

[74]  Brian Keith,et al.  HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. , 2008, Cancer cell.

[75]  W. Kaelin,et al.  Kinase requirements in human cells: III. Altered kinase requirements in VHL−/− cancer cells detected in a pilot synthetic lethal screen , 2008, Proceedings of the National Academy of Sciences.

[76]  E. Rankin,et al.  Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice , 2008, Oncogene.

[77]  F. Waldman,et al.  von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. , 2008, The Journal of urology.

[78]  P. Sutphin,et al.  A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. , 2008, Cancer cell.

[79]  R. Burk,et al.  Downregulation of integrins by von Hippel-Lindau (VHL) tumor suppressor protein is independent of VHL-directed hypoxia-inducible factor alpha degradation. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[80]  S A Forbes,et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC) , 2008, Current protocols in human genetics.

[81]  S. Signoretti,et al.  VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400 , 2008, Nature Cell Biology.

[82]  Svetlana V. Harbaugh,et al.  The von Hippel-Lindau Tumor Suppressor Protein and Egl-9-Type Proline Hydroxylases Regulate the Large Subunit of RNA Polymerase II in Response to Oxidative Stress , 2008, Molecular and Cellular Biology.

[83]  A. Pause,et al.  Collagen matrix assembly is driven by the interaction of von Hippel–Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2 , 2008, Oncogene.

[84]  S. Signoretti,et al.  Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. , 2007, Clinical genitourinary cancer.

[85]  W. Rathmell,et al.  von Hippel-Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2alpha signaling and splenic erythropoiesis. , 2007, The Journal of clinical investigation.

[86]  B. Ebert,et al.  pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. , 2007, Molecular cell.

[87]  P. Dervan,et al.  Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. , 2007, ACS chemical biology.

[88]  W. Krek,et al.  The VHL Tumor Suppressor: Riding Tandem with GSK3β in Primary Cilium Maintenance , 2007, Cell cycle.

[89]  J. M. García-Sagredo,et al.  Loss of the actin regulator HSPC300 results in clear cell renal cell carcinoma protection in Von Hippel‐Lindau patients , 2007, Human mutation.

[90]  Yoji Andrew Minamishima,et al.  Hypoxia-Inducible Factor Linked to Differential Kidney Cancer Risk Seen with Type 2A and Type 2B VHL Mutations , 2007, Molecular and Cellular Biology.

[91]  P. Ratcliffe,et al.  Interaction of Hydroxylated Collagen IV with the von Hippel-Lindau Tumor Suppressor* , 2007, Journal of Biological Chemistry.

[92]  E. Rankin,et al.  Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. , 2007, The Journal of clinical investigation.

[93]  R. Johnson,et al.  Acute postnatal ablation of Hif-2α results in anemia , 2007, Proceedings of the National Academy of Sciences.

[94]  E. Maher,et al.  Genotype–phenotype correlations in von Hippel‐Lindau disease , 2004, Human mutation.

[95]  S. Richard,et al.  Somatic von Hippel-Lindau (VHL) gene analysis and clinical outcome under antiangiogenic treatment in metastatic renal cell carcinoma: preliminary results , 2007, Targeted Oncology.

[96]  P. Dervan,et al.  Exploring the limits of benzimidazole DNA-binding oligomers for the hypoxia inducible factor (HIF) site. , 2006, Bioorganic & medicinal chemistry.

[97]  C. Brinckerhoff,et al.  Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase , 2006, Molecular Cancer.

[98]  H. Zentgraf,et al.  The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth , 2006, The Journal of cell biology.

[99]  G. Berx,et al.  VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail , 2006, Molecular and Cellular Biology.

[100]  B. Ebert,et al.  Failure to prolyl hydroxylate hypoxia‐inducible factor α phenocopies VHL inactivation in vivo , 2006 .

[101]  W. Kaelin,et al.  Molecular pathways in renal cell carcinoma--rationale for targeted treatment. , 2006, Seminars in oncology.

[102]  K. Chew,et al.  Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and Von Hippel‐Lindau gene status , 2006, BJU international.

[103]  H. Youn,et al.  The Positive Regulation of p53 by the Tumor Suppressor VHL , 2006, Cell cycle.

[104]  W. Linehan,et al.  Development of a Cell-Based Reporter Assay for Screening of Inhibitors of Hypoxia-Inducible Factor 2-Induced Gene Expression , 2006, Journal of biomolecular screening.

[105]  Claudio R. Thoma,et al.  Priming-Dependent Phosphorylation and Regulation of the Tumor Suppressor pVHL by Glycogen Synthase Kinase 3 , 2006, Molecular and Cellular Biology.

[106]  R. Burk,et al.  Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. , 2006, Cancer research.

[107]  M. Tran,et al.  Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. , 2006, Journal of the American Society of Nephrology : JASN.

[108]  M. Ashcroft,et al.  Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. , 2006, Cancer research.

[109]  E. Cho,et al.  p53 stabilization and transactivation by a von Hippel-Lindau protein. , 2006, Molecular cell.

[110]  R. Johnson,et al.  pVHL Function Is Essential for Endothelial Extracellular Matrix Deposition , 2006, Molecular and Cellular Biology.

[111]  E. Rankin,et al.  Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. , 2006, Cancer research.

[112]  M. Ohh,et al.  Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. , 2006, Cancer research.

[113]  P. Jemth,et al.  Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1α interactions , 2006, Oncogene.

[114]  D. Mukhopadhyay,et al.  Role of elongin-binding domain of von hippel lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma , 2005, Oncogene.

[115]  W. Kaelin The Concept of Synthetic Lethality in the Context of Anticancer Therapy , 2005, Nature Reviews Cancer.

[116]  W. Kaelin,et al.  Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. , 2005, Cancer cell.

[117]  G. Semenza,et al.  Stromal Cell–Derived Factor-1α and CXCR4 Expression in Hemangioblastoma and Clear Cell-Renal Cell Carcinoma: von Hippel-Lindau Loss-of-Function Induces Expression of a Ligand and Its Receptor , 2005 .

[118]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[119]  J. Frydman,et al.  Folding and Quality Control of the VHL Tumor Suppressor Proceed through Distinct Chaperone Pathways , 2005, Cell.

[120]  C. Vinson A Rationally Designed Small Molecule That Inhibits the HIF-1α–ARNT Heterodimer from Binding to DNA in Vivo , 2005, Science's STKE.

[121]  Joon-Oh Park,et al.  Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. , 2005, Oncology reports.

[122]  E. Rankin,et al.  Inactivation of the Arylhydrocarbon Receptor Nuclear Translocator (Arnt) Suppresses von Hippel-Lindau Disease-Associated Vascular Tumors in Mice , 2005, Molecular and Cellular Biology.

[123]  J. Richardson,et al.  HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. , 2005, Blood.

[124]  M. Rettig,et al.  VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341) through an NF-κB-dependent mechanism , 2005, Oncogene.

[125]  C. Brinckerhoff,et al.  Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2α in von Hippel–Lindau renal cell carcinoma , 2005, Oncogene.

[126]  A. Fersht,et al.  Binding of Natively Unfolded HIF-1α ODD Domain to p53 , 2005 .

[127]  P. E. V. Hippel Über eine sehr seltene Erkrankung der Netzhaut , 1904, Albrecht von Graefes Archiv für Ophthalmologie.

[128]  G. Semenza,et al.  Stromal Cell – Derived Factor-1 A and CXCR 4 Expression in Hemangioblastoma and Clear Cell-Renal Cell Carcinoma : von Hippel-Lindau Loss-of-Function Induces Expression of a Ligand and Its Receptor , 2005 .

[129]  Martin S. Taylor,et al.  Genetic Analysis of Pathways Regulated by the von Hippel-Lindau Tumor Suppressor in Caenorhabditis elegans , 2004, PLoS biology.

[130]  C. Junien,et al.  Genotype–phenotype correlation in von Hippel‐Lindau families with renal lesions , 2004, Human mutation.

[131]  三原 忠紘,et al.  てんかん治療の Expert Consensus , 2004 .

[132]  J. Klco,et al.  pVHL Modification by NEDD8 Is Required for Fibronectin Matrix Assembly and Suppression of Tumor Development , 2004, Molecular and Cellular Biology.

[133]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[134]  F. Holstege,et al.  Fibronectin is a hypoxia‐independent target of the tumor suppressor VHL , 2004, FEBS letters.

[135]  P. Albert,et al.  Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location , 2004, Human mutation.

[136]  P. Choyke,et al.  Von Hippel-Lindau (VHL) disease: distinct phenotypes suggest more than one mutant allele at the VHL locus , 1991, Human Genetics.

[137]  K. Tory,et al.  Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours , 2004, Human Genetics.

[138]  Brian Keith,et al.  Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation , 2003, Molecular and Cellular Biology.

[139]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[140]  L. Gunaratnam,et al.  Hypoxia Inducible Factor Activates the Transforming Growth Factor-α/Epidermal Growth Factor Receptor Growth Stimulatory Pathway in VHL-/- Renal Cell Carcinoma Cells* , 2003, Journal of Biological Chemistry.

[141]  M. Ohh,et al.  The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. , 2003, Cancer research.

[142]  M. Gorospe,et al.  Influence of the RNA-Binding Protein HuR in pVHL-Regulated p53 Expression in Renal Carcinoma Cells , 2003, Molecular and Cellular Biology.

[143]  H. Moch,et al.  Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL , 2003, Nature.

[144]  H. Tabuchi,et al.  Loss of von Hippel-Lindau protein causes cell density dependent deregulation of CyclinD1 expression through Hypoxia-inducible factor , 2003, Oncogene.

[145]  J. Klco,et al.  Gene expression profiling in a renal cell carcinoma cell line: dissecting VHL and hypoxia-dependent pathways. , 2003, Molecular cancer research : MCR.

[146]  R. Conaway,et al.  von Hippel–Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[147]  J. Jelinek,et al.  Mutations in the VHL gene in sporadic apparently congenital polycythemia. , 2003, Blood.

[148]  W. Krek,et al.  Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL , 2003, Nature Cell Biology.

[149]  David Mole,et al.  Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia , 2002, Nature Genetics.

[150]  J. Strauchen Germ-line mutations in nonsyndromic pheochromocytoma. , 2002, The New England journal of medicine.

[151]  R. Houlston,et al.  Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. , 2002, Cancer research.

[152]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[153]  Charles C Wykoff,et al.  HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. , 2002, Cancer cell.

[154]  Richard D Klausner,et al.  VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. , 2002, Cancer research.

[155]  F. Sánchez‐Madrid,et al.  Role of the von Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. , 2002, Cancer research.

[156]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[157]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[158]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[159]  L. Khachigian,et al.  von Hippel‐Lindau tumor suppressor protein represses platelet‐derived growth factor B‐chain gene expression via the Sp1 binding element in the proximal PDGF‐B promoter , 2002, Journal of cellular biochemistry.

[160]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[161]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[162]  P. Ratcliffe,et al.  Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. , 2001, Human molecular genetics.

[163]  J. Zentner,et al.  Reconsideration of biallelic inactivation of theVHL tumour suppressor gene in hemangioblastomas of the central nervous system , 2001, Journal of neurology, neurosurgery, and psychiatry.

[164]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[165]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[166]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[167]  Eamonn R. Maher,et al.  Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein* , 2000, The Journal of Biological Chemistry.

[168]  L. Poellinger,et al.  Mechanism of regulation of the hypoxia‐inducible factor‐1α by the von Hippel‐Lindau tumor suppressor protein , 2000, The EMBO journal.

[169]  R. Burk,et al.  Elongin BC complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[170]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[171]  D. Mukhopadhyay,et al.  An important von Hippel-Lindau tumor suppressor domain mediates Sp1-binding and self-association. , 1999, Biochemical and biophysical research communications.

[172]  V. Thulasiraman,et al.  Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. , 1999, Molecular cell.

[173]  R. Klausner,et al.  Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[174]  T. Shuin,et al.  Direct interaction of the beta-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. , 1999, Biochemical and biophysical research communications.

[175]  M. Gstaiger,et al.  The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. , 1999, Genes & development.

[176]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[177]  S. Elledge,et al.  Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. , 1999, Science.

[178]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[179]  B. Seizinger,et al.  Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity , 1999, Oncogene.

[180]  C. Junien,et al.  Mutations of the VHL gene in sporadic renal cell carcinoma: Definition of a risk factor for VHL patients to develop an RCC , 1999, Human mutation.

[181]  T. Fojo,et al.  Inhibitors of transcription, proteasome inhibitors, and DNA-damaging drugs differentially affect feedback of p53 degradation. , 1998, Experimental cell research.

[182]  A. Webster,et al.  An analysis of phenotypic variation in the familial cancer syndrome von Hippel-Lindau disease: evidence for modifier effects. , 1998, American journal of human genetics.

[183]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[184]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[185]  S. Clifford,et al.  Inactivation of the von Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: Evidence for a VHL‐independent pathway in clear cell renal tumourigenesis , 1998 .

[186]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[187]  R. Klausner,et al.  The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[188]  W. Kaelin,et al.  Regulation of Hypoxia-Inducible mRNAs by the von Hippel-Lindau Tumor Suppressor Protein Requires Binding to Complexes Containing Elongins B/C and Cul2 , 1998, Molecular and Cellular Biology.

[189]  V. Sukhatme,et al.  Transforming Growth Factor α Is a Target for the Von Hippel-Lindau Tumor Suppressor , 1998 .

[190]  S. Clifford,et al.  Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. , 1998, Genes, chromosomes & cancer.

[191]  K. Plate,et al.  Coexpression of erythropoietin and vascular endothelial growth factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function. , 1998, Blood.

[192]  Christophe Béroud,et al.  Software and database for the analysis of mutations in the VHL gene , 1998, Nucleic Acids Res..

[193]  D. Mukhopadhyay,et al.  The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity , 1997, Molecular and cellular biology.

[194]  E. van den Berg,et al.  Analysis of multiple renal cell adenomas and carcinomas suggests allelic loss at 3p21 to be a prerequisite for malignant development , 1997, Genes, chromosomes & cancer.

[195]  R. Klausner,et al.  The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[196]  R. Klausner,et al.  Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[197]  W. Kaelin,et al.  Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[198]  G. Reifenberger,et al.  MUTATION OF THE VON HIPPEL–LINDAU TUMOUR SUPPRESSOR GENE IN CAPILLARY HAEMANGIOBLASTOMAS OF THE CENTRAL NERVOUS SYSTEM , 1996, The Journal of pathology.

[199]  S. Chew,et al.  Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. , 1995, Journal of medical genetics.

[200]  Fan,et al.  Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations. , 1995, Cancer research.

[201]  D. Duan,et al.  Inhibition of transcription elongation by the VHL tumor suppressor protein , 1995, Science.

[202]  A. Kibel,et al.  Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C , 1995, Science.

[203]  T. Shuin,et al.  [Results of mutation analyses of von Hippel-Lindau disease gene in Japanese patients: comparison with results in United States and United Kingdom]. , 1995, Hinyokika kiyo. Acta urologica Japonica.

[204]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[205]  K. Plate,et al.  Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. , 1995, Cancer research.

[206]  W. Linehan,et al.  Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: Correlations with phenotype , 1995, Human mutation.

[207]  M. Ferguson-Smith,et al.  Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. , 1994, Human molecular genetics.

[208]  B. Seizinger,et al.  Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. , 1994, American journal of human genetics.

[209]  T. Sugimura,et al.  Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. , 1994, Cancer research.

[210]  T. Sugiyama,et al.  Frequent overexpression of vascular endothelial growth factor gene in human renal cell carcinoma. , 1994, The Tohoku journal of experimental medicine.

[211]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[212]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[213]  F. Hartl,et al.  Function in protein folding of TRiC, a cytosolic ring complex containing TCP‐1 and structurally related subunits. , 1992, The EMBO journal.

[214]  O. Wiestler,et al.  Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus , 1991, The Lancet.

[215]  M. Ferguson-Smith,et al.  Statistical analysis of the two stage mutation model in von Hippel-Lindau disease, and in sporadic cerebellar haemangioblastoma and renal cell carcinoma. , 1990, Journal of medical genetics.

[216]  N. Casadevall,et al.  Tumor cells are the site of erythropoietin synthesis in human renal cancers associated with polycythemia. , 1990, Blood.

[217]  Y. Nakamura,et al.  Specific genetic change in tumors associated with von Hippel-Lindau disease. , 1989, Journal of the National Cancer Institute.

[218]  H. Brauch,et al.  Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma , 1988, Nature.

[219]  G. Johnson,et al.  Von Hippel-Lindau disease in a Newfoundland kindred. , 1986, CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.

[220]  N. Sobol,et al.  PRELIMINARY RESULTS , 2004 .

[221]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[222]  K. Melmon,et al.  Lindau's disease: Review of the literature and study of a large kindred , 1964 .

[223]  A. Lindau ZUR FRAGE DER ANGIOMATOSIS RETINæ UND IHRER HIRNKOMPLIKATIONEN , 1926 .

[224]  申瀅植 III. , 1889, Selected Poems.