Scalable Clustering of Individual Electrical Curves for Profiling and Bottom-up Forecasting

Smart grids require flexible data driven forecasting methods. We propose clustering tools for bottom-up short-term load forecasting. We focus on individual consumption data analysis which plays a major role for energy management and electricity load forecasting. The two first sections are dedicated to the industrial context and a review of individual electrical data analysis. We are interested in hierarchical time-series for bottom-up forecasting. The idea is to disaggregate the signal in such a way that the sum of disaggregated forecasts improves the direct prediction. The 3-steps strategy defines numerous super-consumers by curve clustering, builds a hierarchy of partitions and selects the best one minimizing a forecast criterion. Using a nonparametric model to handle forecasting, and wavelets to define various notions of similarity between load curves, this disaggregation strategy applied to French individual consumers leads to a gain of 16% in forecast accuracy. We then explore the upscaling capacity of this strategy facing massive data and implement proposals using R, the free software environment for statistical computing. The proposed solutions to make the algorithm scalable combines data storage, parallel computing and double clustering step to define the super-consumers.

[1]  Jean-Michel Poggi,et al.  OPTIMIZED CLUSTERS FOR DISAGGREGATED ELECTRICITY LOAD FORECASTING , 2010 .

[2]  Maurizio Vichi,et al.  Time-varying clustering of multivariate longitudinal observations , 2014, 1404.6201.

[3]  Hui Jiang,et al.  Energy big data: A survey , 2016, IEEE Access.

[4]  Michael E. Webber,et al.  Clustering analysis of residential electricity demand profiles , 2014 .

[5]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[6]  Yi Wang,et al.  Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges , 2018, IEEE Transactions on Smart Grid.

[7]  Yannig Goude,et al.  Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts , 2015 .

[8]  Z. Vale,et al.  An electric energy consumer characterization framework based on data mining techniques , 2005, IEEE Transactions on Power Systems.

[9]  Douglas Steinley,et al.  A New Variable Weighting and Selection Procedure for K-means Cluster Analysis , 2008, Multivariate behavioral research.

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Fangchun Yang,et al.  A Fused Load Curve Clustering Algorithm Based on Wavelet Transform , 2018, IEEE Transactions on Industrial Informatics.

[12]  Anestis Antoniadis,et al.  Prévision d’un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d’électricité , 2012 .

[13]  Jairo Cugliari,et al.  Prévision non paramétrique de processus à valeurs fonctionnelles : application à la consommation d’électricité , 2011 .

[14]  Bereket Tanju,et al.  Smart Meter Data Analytics for Optimal Customer Selection in Demand Response Programs , 2017 .

[15]  Goran Strbac,et al.  C-Vine copula mixture model for clustering of residential electrical load pattern data , 2017 .

[16]  A. Antoniadis,et al.  Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models , 2016, IEEE Transactions on Power Systems.

[17]  Chao Shen,et al.  A review of electric load classification in smart grid environment , 2013 .

[18]  Per Hallberg,et al.  Power to the People!: European Perspectives on the Future of Electric Distribution , 2014, IEEE Power and Energy Magazine.

[19]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[20]  Mohamed Chaouch,et al.  Clustering-Based Improvement of Nonparametric Functional Time Series Forecasting: Application to Intra-Day Household-Level Load Curves , 2014, IEEE Transactions on Smart Grid.

[21]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[22]  Heng Huang,et al.  Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities , 2015, IEEE Transactions on Smart Grid.

[23]  Hamid Sharif,et al.  A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges , 2013, IEEE Communications Surveys & Tutorials.

[24]  Chongqing Kang,et al.  Load profiling and its application to demand response: A review , 2015 .

[25]  Ram Rajagopal,et al.  Household Energy Consumption Segmentation Using Hourly Data , 2014, IEEE Transactions on Smart Grid.

[26]  Jean-Michel Poggi Prévision non paramétrique de la consommation électrique , 1994 .

[27]  Yang Weng,et al.  A Sparse Linear Model and Significance Test for Individual Consumption Prediction , 2015, IEEE Transactions on Power Systems.

[28]  Xinghuo Yu,et al.  Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey , 2016, IEEE Transactions on Industrial Informatics.

[29]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[30]  Geert Deconinck,et al.  Potential of Active Demand Reduction With Residential Wet Appliances: A Case Study for Belgium , 2015, IEEE Transactions on Smart Grid.

[31]  Denis Bosq,et al.  Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes , 1991 .

[32]  Anestis Antoniadis,et al.  Clustering Functional Data using Wavelets , 2010, Int. J. Wavelets Multiresolution Inf. Process..

[33]  Ben Anderson,et al.  Electricity consumption and household characteristics: Implications for census-taking in a smart metered future , 2017, Comput. Environ. Urban Syst..

[34]  Robi Polikar Ensemble learning , 2009, Scholarpedia.

[35]  Julien Jacques,et al.  Functional data clustering: a survey , 2013, Advances in Data Analysis and Classification.

[36]  A. Antoniadis,et al.  A functional wavelet–kernel approach for time series prediction , 2006 .

[37]  Chongqing Kang,et al.  Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data , 2019, IEEE Transactions on Smart Grid.

[38]  Carlos Alzate,et al.  Improved Electricity Load Forecasting via Kernel Spectral Clustering of Smart Meters , 2013, 2013 IEEE 13th International Conference on Data Mining.

[39]  Yannig Goude,et al.  Disaggregated electricity forecasting using wavelet-based clustering of individual consumers , 2016, 2016 IEEE International Energy Conference (ENERGYCON).

[40]  Antti Mutanen,et al.  Customer Classification and Load Profiling Method for Distribution Systems , 2011, IEEE Transactions on Power Delivery.

[41]  S. Mallat A wavelet tour of signal processing , 1998 .

[42]  Gianfranco Chicco,et al.  Overview and performance assessment of the clustering methods for electrical load pattern grouping , 2012 .