The one- and multi-sample problem for functional data with application to projective shape analysis

In this paper tests are derived for testing neighborhood hypotheses for the one- and multi-sample problem for functional data. Our methodology is used to generalize testing in projective shape analysis, which has traditionally involving data consisting of finite number of points, to the functional case. The one-sample test is applied to the problem of scene identification, in the context of the projective shape of a planar curve.

[1]  C. Robert,et al.  Model choice in generalised linear models: A Bayesian approach via Kullback-Leibler projections , 1998 .

[2]  Holger Dette,et al.  Nonparametric comparison of several regression functions: exact and asymptotic theory , 1998 .

[3]  Vic Patrangenaru,et al.  Analysis of projective shapes of curves using projective frames , .

[4]  Anuj Srivastava,et al.  Monte Carlo extrinsic estimators of manifold-valued parameters , 2002, IEEE Trans. Signal Process..

[5]  Anuj Srivastava,et al.  Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[7]  Kanti V. Mardia,et al.  Directions and projective shapes , 2005, math/0508280.

[8]  Second Order and $L^p$-Comparisons between the Bootstrap and Empirical Edgeworth Expansion Methodologies , 1989 .

[9]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .

[10]  V. Patrangenaru,et al.  NEW LARGE SAMPLE AND BOOTSTRAP METHODS ON SHAPE SPACES IN HIGH LEVEL ANALYSIS OF NATURAL IMAGES , 2001 .

[11]  S. Sugathadasa,et al.  Projective Shape Analysis for Noncalibrated Pinhole Camera Views . To the Memory of , 2007 .

[12]  J. L. Hodges,et al.  Testing the Approximate Validity of Statistical Hypotheses , 1954 .

[13]  A. Munk,et al.  Some Methodological Aspects of Validation of Models in Nonparametric Regression , 2003 .

[14]  R. C. Bose,et al.  Simultaneous Confidence Interval Estimation , 1953 .

[15]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[16]  B. Lindsay,et al.  Building and using semiparametric tolerance regions for parametric multinomial models , 2009, 0909.0608.

[17]  Robert L. Paige,et al.  Nonparametric Density Estimation on Homogeneous Spaces in High Level Image Analysis. , 2004 .

[18]  Bernard W. Silverman,et al.  Functional Data Analysis , 1997 .

[19]  R. Bhattacharya,et al.  Nonparametic estimation of location and dispersion on Riemannian manifolds , 2002 .

[20]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[21]  H. Hendriks,et al.  Mean Location and Sample Mean Location on Manifolds , 1998 .

[22]  Holger Dette,et al.  Validation of linear regression models , 1998 .

[23]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[24]  Brian D. Ripley,et al.  Statistics on Spheres , 1983 .

[25]  Jayanta K. Ghosh,et al.  Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square variables , 1979 .

[26]  H. Hotelling The Generalization of Student’s Ratio , 1931 .

[27]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Frits H. Ruymgaart,et al.  Some Applications of Watson's Perturbation Approach to Random Matrices , 1997 .

[29]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[30]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[31]  K. Mardia,et al.  Projective Shape Analysis , 1999 .

[32]  Anuj Srivastava,et al.  Elastic-string models for representation and analysis of planar shapes , 2004, CVPR 2004.

[33]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .