A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition
暂无分享,去创建一个
[1] John J. Nelson,et al. Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .
[2] M. Gunzburger,et al. Analysis of least squares finite element methods for the Stokes equations , 1994 .
[3] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[4] Pavel B. Bochev,et al. A non‐conforming least‐squares finite element method for incompressible fluid flow problems , 2013 .
[5] A. Bossavit,et al. Geometrical localisation of the degrees of freedom for whitney elements of higher order , 2006 .
[6] Max D. Gunzburger,et al. Issues Related to Least-Squares Finite Element Methods for the Stokes Equations , 1998, SIAM J. Sci. Comput..
[7] Pavel B. Bochev,et al. A spectral mimetic least-squares method , 2014, Comput. Math. Appl..
[8] A. Schaft,et al. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.
[9] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[10] Max Gunzburger,et al. On finite element methods of the least squares type , 1979 .
[11] Pavel B. Bochev,et al. A Locally Conservative Mimetic Least-Squares Finite Element Method for the Stokes Equations , 2009, LSSC.
[12] Artur Palha,et al. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms , 2013, J. Comput. Phys..
[13] Pavel B. Bochev,et al. Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.
[14] K. O. Friedrichs,et al. Differential forms on riemannian manifolds , 1955 .
[15] Alain Bossavit. Computational electromagnetism and geometry : (3): Convergence , 1999 .
[16] Leszek Demkowicz,et al. Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .
[17] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[18] Valerio Pascucci,et al. The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.
[19] G. Schwarz. Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .
[20] Artur Palha,et al. Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.
[21] PascucciValerio,et al. The Helmholtz-Hodge Decomposition—A Survey , 2013 .
[22] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[23] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[24] Marc I. Gerritsma,et al. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..
[25] Mejdi Azaïez,et al. Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators , 2015, J. Sci. Comput..
[26] Pavel B. Bochev,et al. Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .
[27] Pavel B. Bochev,et al. Negative norm least‐squares methods for the velocity‐vorticity‐pressure Navier–Stokes equations , 1999 .
[28] Luke N. Olson,et al. A locally conservative, discontinuous least‐squares finite element method for the Stokes equations , 2012 .
[29] A. Bossavit. On the geometry of electromagnetism , 1998 .
[30] Pavel B. Bochev,et al. Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..
[31] Marc Gerritsma,et al. Edge Functions for Spectral Element Methods , 2011 .
[32] Alexandre Ern,et al. Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.
[33] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[34] Max Gunzburger,et al. On mixed finite element methods for first order elliptic systems , 1981 .