A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

Formulation of locally conservative least-squares finite element methods (LSFEMs) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require non-standard boundary conditions (Bochev and Gunzburger, 2009 3), while methods that admit the no-slip condition satisfy the incompressibility equation only approximately (Bochev and Gunzburger, 2009 4,źChapter 7). Here we address this problem by proving a new non-standard stability bound for the velocity-vorticity-pressure Stokes system augmented with a no-slip boundary condition. This bound gives rise to a norm-equivalent least-squares functional in which the velocity can be approximated by div-conforming finite element spaces, thereby enabling a locally-conservative approximations of this variable. We also provide a practical realization of the new LSFEM using high-order spectral mimetic finite element spaces (Kreeft etźal., 2011) and report several numerical tests, which confirm its mimetic properties.

[1]  John J. Nelson,et al.  Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .

[2]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[3]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[4]  Pavel B. Bochev,et al.  A non‐conforming least‐squares finite element method for incompressible fluid flow problems , 2013 .

[5]  A. Bossavit,et al.  Geometrical localisation of the degrees of freedom for whitney elements of higher order , 2006 .

[6]  Max D. Gunzburger,et al.  Issues Related to Least-Squares Finite Element Methods for the Stokes Equations , 1998, SIAM J. Sci. Comput..

[7]  Pavel B. Bochev,et al.  A spectral mimetic least-squares method , 2014, Comput. Math. Appl..

[8]  A. Schaft,et al.  Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems , 2011, 1111.6403.

[9]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[10]  Max Gunzburger,et al.  On finite element methods of the least squares type , 1979 .

[11]  Pavel B. Bochev,et al.  A Locally Conservative Mimetic Least-Squares Finite Element Method for the Stokes Equations , 2009, LSSC.

[12]  Artur Palha,et al.  Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms , 2013, J. Comput. Phys..

[13]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[14]  K. O. Friedrichs,et al.  Differential forms on riemannian manifolds , 1955 .

[15]  Alain Bossavit Computational electromagnetism and geometry : (3): Convergence , 1999 .

[16]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .

[17]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[18]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[20]  Artur Palha,et al.  Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.

[21]  PascucciValerio,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013 .

[22]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[23]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[24]  Marc I. Gerritsma,et al.  Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..

[25]  Mejdi Azaïez,et al.  Discrete Helmholtz–Hodge Decomposition on Polyhedral Meshes Using Compatible Discrete Operators , 2015, J. Sci. Comput..

[26]  Pavel B. Bochev,et al.  Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .

[27]  Pavel B. Bochev,et al.  Negative norm least‐squares methods for the velocity‐vorticity‐pressure Navier–Stokes equations , 1999 .

[28]  Luke N. Olson,et al.  A locally conservative, discontinuous least‐squares finite element method for the Stokes equations , 2012 .

[29]  A. Bossavit On the geometry of electromagnetism , 1998 .

[30]  Pavel B. Bochev,et al.  Finite Element Methods of Least-Squares Type , 1998, SIAM Rev..

[31]  Marc Gerritsma,et al.  Edge Functions for Spectral Element Methods , 2011 .

[32]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.

[33]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[34]  Max Gunzburger,et al.  On mixed finite element methods for first order elliptic systems , 1981 .