On Integrated L1 Convergence Rate of an Isotonic Regression Estimator for Multivariate Observations

We consider a general monotone regression estimation where we allow for independent and dependent regressors. We propose a modification of the classical isotonic least squares estimator and establish its rate of convergence for the integrated <inline-formula> <tex-math notation="LaTeX">$L^{1}$ </tex-math></inline-formula>-loss function. The methodology captures the shape of the data without assuming additivity or a parametric form for the regression function. Furthermore, the degree of smoothing is chosen automatically and no auxiliary tuning is required for the theoretical analysis. Some simulations and two real data illustrations complement the study of the proposed estimator.

[1]  O. Hössjer,et al.  A general asymptotic scheme for inference under order restrictions , 2006, math/0611270.

[2]  J. Carlos Escanciano,et al.  Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models , 2006 .

[3]  Cun-Hui Zhang,et al.  Limit distribution theory for block estimators in multiple isotonic regression , 2019 .

[4]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[5]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[6]  Adityanand Guntuboyina,et al.  On risk bounds in isotonic and other shape restricted regression problems , 2013, 1311.3765.

[7]  N. Christopeit,et al.  Strong Consistency of Least-Squares Estimators in the Monotone Regression Model with Stochastic Regressors , 1987 .

[8]  Cun-Hui Zhang Risk bounds in isotonic regression , 2002 .

[9]  Dag Tjøstheim,et al.  Poisson Autoregression , 2008 .

[10]  R. Samworth,et al.  Generalized additive and index models with shape constraints , 2014, 1404.2957.

[11]  Cécile Durot,et al.  Sharp asymptotics for isotonic regression , 2002 .

[12]  Victor Chernozhukov,et al.  Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2008 .

[13]  Emmanuel Rio,et al.  Asymptotic Theory of Weakly Dependent Random Processes , 2017 .

[14]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[15]  Steven Stern,et al.  Feasible Nonparametric Estimation of Multiargument Monotone Functions , 1994 .

[16]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[17]  Gordon Pledger,et al.  On Consistency in Monotonic Regression , 1973 .

[18]  Allan R. Sampson,et al.  Order restricted estimators: some bias results , 2003 .

[19]  Sabyasachi Chatterjee,et al.  Isotonic regression in general dimensions , 2017, The Annals of Statistics.

[20]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[21]  Tim Robertson,et al.  Consistency in Generalized Isotonic Regression , 1975 .

[22]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[23]  Abdelaati Daouia,et al.  On Projection‐type Estimators of Multivariate Isotonic Functions , 2013 .

[24]  H. Dette,et al.  A simple nonparametric estimator of a strictly monotone regression function , 2006 .

[25]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[26]  Jean D. Opsomer,et al.  Penalized isotonic regression , 2015 .

[27]  W. Härdle Applied Nonparametric Regression , 1992 .

[28]  竹安 数博,et al.  Time series analysis and its applications , 2007 .

[29]  Magda Peligrad,et al.  Invariance principles for linear processes with application to isotonic regression , 2009, 0903.1951.

[30]  J. Wellner,et al.  Entropy estimate for high-dimensional monotonic functions , 2005, math/0512641.

[31]  Rainer Dahlhaus,et al.  Locally adaptive fitting of semiparametric models to nonstationary time series , 2001 .

[32]  Cun-Hui Zhang,et al.  Isotonic regression in multi-dimensional spaces and graphs , 2018, The Annals of Statistics.

[33]  P. Doukhan Mixing: Properties and Examples , 1994 .

[34]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[35]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .