Precision Scaling Relations for Disk Galaxies in the Local Universe

We build templates of rotation curves as a function of the $I-$band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about $550$ local disk-dominated galaxies with high-quality measurements of the optical radius $R_{\rm opt}$ and of the corresponding rotation velocity $V_{\rm opt}$. Specifically, we determine the stellar $M_\star$ and halo $M_{\rm H}$ masses, the halo size $R_{\rm H}$ and velocity scale ${V_{\rm H}}$, and the specific angular momenta of the stellar $j_\star$ and dark matter $j_{\rm H}$ components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with $1\sigma$ dispersion around the mean relationships of less than $0.1$ dex. We thus set new standard local relationships that must be reproduced by detailed physical models, that offer a basis for improving the sub-grid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

[1]  J. Newman,et al.  On the evolution of the velocity–mass–size relations of disc-dominated galaxies over the past 10 billion years , 2010, 1006.3558.

[2]  H. Hoekstra,et al.  Galaxy Masses: A Review , 2013, 1309.3276.

[3]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[4]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[5]  C. Brook,et al.  A mass-dependent density profile for dark matter haloes including the influence of galaxy formation , 2014, 1404.5959.

[6]  R. Davé,et al.  Gas Accretion onto Galaxies , 2017 .

[7]  H. Hoekstra,et al.  CFHTLenS: co-evolution of galaxies and their dark matter haloes , 2013, 1310.6784.

[8]  S. More,et al.  The kinematic connection between galaxies and dark matter haloes , 2010, 1004.4626.

[9]  P. P. van der Werf,et al.  HERSCHEL-ATLAS GALAXY COUNTS AND HIGH-REDSHIFT LUMINOSITY FUNCTIONS: THE FORMATION OF MASSIVE EARLY-TYPE GALAXIES , 2011, 1108.3911.

[10]  G. Mamon,et al.  Physical properties underlying observed kinematics of satellite galaxies , 2012, 1207.1647.

[11]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[12]  T. Yuan,et al.  A massive, quiescent galaxy at a redshift of 3.717 , 2017, Nature.

[13]  M. Bershady,et al.  The DiskMass Survey - X. Radio synthesis imaging of spiral galaxies , 2015, 1510.07666.

[14]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[15]  F. Marulli,et al.  Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type , 2009, 0910.1093.

[16]  S. M. Fall,et al.  ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED , 2012, 1207.4189.

[17]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[18]  D. Mathewson,et al.  A southern sky survey of the peculiar velocities of 1355 spiral galaxies , 1992 .

[19]  V. Avila-Reese,et al.  THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR , 2014, 1408.5407.

[20]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995 .

[21]  F. Fraternali Gas Accretion via Condensation and Fountains , 2016, 1612.00477.

[22]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[23]  ROTATION CURVES OF 967 SPIRAL GALAXIES , 1995, astro-ph/9502091.

[24]  G. Efstathiou,et al.  Angular momentum from tidal torques , 1987 .

[25]  P. Salucci,et al.  Rotation curves of luminous spiral galaxies , 2011, 1110.1925.

[26]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[27]  D. Vergani,et al.  The cored distribution of dark matter in spiral galaxies , 2004, astro-ph/0403154.

[28]  L. Danese,et al.  Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture? , 2017, 1706.02165.

[29]  J. Gunn,et al.  Calibrated Tully–Fisher relations for improved estimates of disc rotation velocities , 2011, 1106.1650.

[30]  S. M. Fall,et al.  Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3 , 2017, 1701.04001.

[31]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[32]  S. More,et al.  Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing , 2015, 1509.06762.

[33]  Italy.,et al.  Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation , 2017, 1708.07643.

[34]  J. Schombert,et al.  SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES , 2016, 1606.09251.

[35]  F. Fraternali,et al.  Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation , 2017, 1711.04763.

[36]  David Burstein,et al.  Rotation velocities of 16 SA galaxies and a comparison of Sa, SB and SC rotation properties. , 1985 .

[37]  A. Coil,et al.  A massive, quiescent, population II galaxy at a redshift of 2.1 , 2016, Nature.

[38]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[39]  To Appear in ApJ letters Preprint typeset using L ATEX style emulateapj v. 04/03/99 DARK MATTER SCALING RELATIONS , 2000 .

[40]  R. Giovanelli,et al.  Template Rotation Curves for Disk Galaxies , 2005, astro-ph/0512051.

[41]  S. White,et al.  The mass profile and accretion history of cold dark matter haloes , 2013, 1302.0288.

[42]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[43]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[44]  P. Salucci,et al.  The structure of spiral galaxies: radial profiles in stellar Mass-to-Light ratio and the Dark Matter distribution , 2009, 0904.4098.

[45]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[46]  K. Spekkens,et al.  DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS , 2010, 1011.2864.

[47]  V. Springel,et al.  Angular momentum properties of haloes and their baryon content in the Illustris simulation , 2016, 1608.01323.

[48]  P. Salucci,et al.  New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation , 2006, astro-ph/0601577.

[49]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[50]  S. Casertano Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses , 1983 .

[51]  C. Brook,et al.  Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations , 2016, 1605.05971.

[52]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[53]  S. M. Fall Galaxy Formation: Some Comparisons Between Theory and Observation , 1983 .

[54]  S. Courteau,et al.  A Revised Model for the Formation of Disk Galaxies: Low Spin and Dark Halo Expansion , 2006, astro-ph/0604553.

[55]  K. Masters,et al.  Geometrical tests of cosmological models - II. Calibration of rotational widths and disc scaling relations , 2007, 0710.0760.

[56]  A. Kravtsov THE SIZE–VIRIAL RADIUS RELATION OF GALAXIES , 2012, 1212.2980.

[57]  P. Salucci,et al.  The universal rotation curve of dwarf disc galaxies , 2016, 1609.06903.

[58]  L. Danese,et al.  BLACK HOLE AND GALAXY COEVOLUTION FROM CONTINUITY EQUATION AND ABUNDANCE MATCHING , 2015, 1507.07318.

[59]  P. Salucci,et al.  The universal rotation curve of spiral galaxies II: the dark matter distribution out to the virial radius , 2007 .

[60]  J. Silk,et al.  Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation : the impact of AGN feedback , 2016, 1611.09922.

[61]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[62]  Rachel Mandelbaum,et al.  Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy–galaxy lensing , 2011, 1110.4107.

[63]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1996 .

[64]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[65]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[66]  Ben Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2007 .