Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers.

[1]  L. Hedges,et al.  Introduction to Meta‐Analysis , 2009, International Coaching Psychology Review.

[2]  Y. Kamatani,et al.  Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer. , 2019, Gastroenterology.

[3]  Jack A. Taylor,et al.  Fine-mapping of 150 breast cancer risk regions identifies 178 high confidence target genes , 2019, bioRxiv.

[4]  Tao Chen,et al.  Genetic variants in SLC22A3 contribute to the susceptibility to colorectal cancer , 2019, International journal of cancer.

[5]  Stephanie A. Bien,et al.  Novel Common Genetic Susceptibility Loci for Colorectal Cancer , 2018, Journal of the National Cancer Institute.

[6]  K. D. Sørensen,et al.  Shared heritability and functional enrichment across six solid cancers , 2018, bioRxiv.

[7]  Mathieu Lemire,et al.  Discovery of common and rare genetic risk variants for colorectal cancer , 2018, Nature Genetics.

[8]  R. Sanz-Pamplona,et al.  Colon-specific eQTL analysis to inform on functional SNPs , 2018, British Journal of Cancer.

[9]  Li Ding,et al.  Comprehensive Characterization of Cancer Driver Genes and Mutations (vol 173, 371.e1, 2018) , 2018 .

[10]  J. Schleutker,et al.  Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus , 2018, Cell.

[11]  R. Eeles,et al.  A Review of Prostate Cancer Genome-Wide Association Studies (GWAS) , 2018, Cancer Epidemiology, Biomarkers & Prevention.

[12]  K. D. Sørensen,et al.  Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.

[13]  Nawaid Usmani,et al.  Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants , 2018, Nature Communications.

[14]  J. Long,et al.  A Comprehensive cis-eQTL Analysis Revealed Target Genes in Breast Cancer Susceptibility Loci Identified in Genome-wide Association Studies. , 2018, American journal of human genetics.

[15]  Steven J. M. Jones,et al.  Comprehensive Characterization of Cancer Driver Genes and Mutations , 2018, Cell.

[16]  Michael T. Zimmermann,et al.  Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas , 2018, Cell reports.

[17]  Peter Kraft,et al.  Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer , 2018, Nature Communications.

[18]  Chi-Ching Lee,et al.  mSignatureDB: a database for deciphering mutational signatures in human cancers , 2017, Nucleic Acids Res..

[19]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[20]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[21]  G. Legube,et al.  Histone demethylase KDM5A regulates the ZMYND8–NuRD chromatin remodeler to promote DNA repair , 2017, The Journal of cell biology.

[22]  A. Weng,et al.  Inactivation of the Kinase Domain of CDK10 Prevents Tumor Growth in a Preclinical Model of Colorectal Cancer, and Is Accompanied by Downregulation of Bcl-2 , 2017, Molecular Cancer Therapeutics.

[23]  Y. Bossé,et al.  A Decade of GWAS Results in Lung Cancer , 2017, Cancer Epidemiology, Biomarkers & Prevention.

[24]  Sandro Morganella,et al.  Mutational Signatures in Breast Cancer: The Problem at the DNA Level , 2017, Clinical Cancer Research.

[25]  X. Zuo,et al.  RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer , 2017, Proceedings of the National Academy of Sciences.

[26]  L. Le Marchand,et al.  In silico pathway analysis and tissue specific cis-eQTL for colorectal cancer GWAS risk variants , 2017, BMC Genomics.

[27]  William S. Bush,et al.  Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes , 2017, Nature Genetics.

[28]  Kconfab Investigators,et al.  Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer , 2017 .

[29]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[30]  H. Stunnenberg,et al.  ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. , 2016, Cell reports.

[31]  Matthias W. Beckmann,et al.  Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation , 2016, American journal of human genetics.

[32]  Steven Gallinger,et al.  Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. , 2016, Cancer research.

[33]  M. Stratton,et al.  Mutational signatures associated with tobacco smoking in human cancer , 2016, Science.

[34]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[35]  Gad Getz,et al.  Somatic ERCC2 Mutations Are Associated with a Distinct Genomic Signature in Urothelial Tumors , 2016, Nature Genetics.

[36]  James E. Helmreich Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression and Survival Analysis (2nd Edition) , 2016 .

[37]  J. Lindberg,et al.  Gene regulatory mechanisms underpinning prostate cancer susceptibility , 2016, Nature Genetics.

[38]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[39]  Asha A. Nair,et al.  Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set , 2015, Nature Communications.

[40]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[41]  Andrew Carroll,et al.  WGSA: an annotation pipeline for human genome sequencing studies , 2015, Journal of Medical Genetics.

[42]  S. Cross,et al.  Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk , 2015, Cancer Epidemiology, Biomarkers & Prevention.

[43]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[44]  Gonçalo R. Abecasis,et al.  Minimac2: Faster Genotype Imputation , 2015, Bioinform..

[45]  R. Houlston,et al.  Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci , 2015, Nature Communications.

[46]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[47]  J. Brodbelt,et al.  Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination , 2015, Genes & development.

[48]  Li Teng,et al.  4DGenome: a comprehensive database of chromatin interactions , 2015, Bioinform..

[49]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[50]  Y. Bossé,et al.  Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung. , 2014, Carcinogenesis.

[51]  Peter Kraft,et al.  Association of Prostate Cancer Risk Variants with Gene Expression in Normal and Tumor Tissue , 2014, Cancer Epidemiology, Biomarkers & Prevention.

[52]  Kevin Y. Yip,et al.  FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer , 2014, Genome Biology.

[53]  B. Stranger,et al.  Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.

[54]  Xavier Solé,et al.  Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. , 2014, Carcinogenesis.

[55]  W. Wasserman,et al.  On the identification of potential regulatory variants within genome wide association candidate SNP sets , 2014, BMC Medical Genomics.

[56]  M. Rubin,et al.  Variants at IRX4 as prostate cancer expression quantitative trait loci , 2013, European Journal of Human Genetics.

[57]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[58]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[59]  T. Glover,et al.  The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability. , 2013, Human molecular genetics.

[60]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[61]  Kerstin B. Meyer,et al.  Master regulators of FGFR2 signalling and breast cancer risk , 2013, Nature Communications.

[62]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[63]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[64]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[65]  M. Stratton,et al.  DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis , 2013, eLife.

[66]  N. A. Temiz,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[67]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[68]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[69]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[70]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[71]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[72]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[73]  W. Hahn,et al.  Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis , 2012, Proceedings of the National Academy of Sciences.

[74]  Lisa Helbling Chadwick,et al.  The NIH Roadmap Epigenomics Program data resource. , 2012, Epigenomics.

[75]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[76]  Hui Li,et al.  CDK10 functions as a tumor suppressor gene and regulates survivability of biliary tract cancer cells , 2011, Oncology reports.

[77]  S. Batzoglou,et al.  Linking disease associations with regulatory information in the human genome , 2012, Genome research.

[78]  Zhi John Lu,et al.  Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project , 2011, Nucleic acids research.

[79]  Simon C. Potter,et al.  The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study , 2011, PLoS genetics.

[80]  Marshall W. Anderson,et al.  Haplotype and cell proliferation analyses of candidate lung cancer susceptibility genes on chromosome 15q24-25.1. , 2009, Cancer research.

[81]  H. Stunnenberg,et al.  ChIP‐Seq of ERα and RNA polymerase II defines genes differentially responding to ligands , 2009, The EMBO journal.

[82]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[83]  Jean-Stéphane Varré,et al.  Efficient and accurate P-value computation for Position Weight Matrices , 2007, Algorithms for Molecular Biology.

[84]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[85]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[86]  M. Beckmann,et al.  Evidence that the 5 p 12 Variant rs 10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF 10 and MRPS 30 Regulation , 2022 .