Corrected trapezoidal rules for a class of singular functions

A set of accurate quadrature rules applicable to a class of integrable functions with isolated singularities is designed and analysed theoretically in one and two dimensions. These quadrature rules ...

[1]  Anna-Karin Tornberg,et al.  A highly accurate boundary treatment for confined Stokes flow , 2012 .

[2]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[3]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[4]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[5]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[6]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[7]  Kendall E. Atkinson QUADRATURE OF SINGULAR INTEGRANDS OVER SURFACES , 2004 .

[8]  M.A. Khayat,et al.  Numerical evaluation of singular and near-singular potential Integrals , 2005, IEEE Transactions on Antennas and Propagation.

[9]  H. Cohen Analytic and modern tools , 2007 .

[10]  Ran Duan,et al.  High-order quadratures for the solution of scattering problems in two dimensions , 2009, J. Comput. Phys..

[11]  A. Sidi Application of class I m variable transformations to numerical integration over surfaces of spheres , 2005 .

[12]  V. Rokhlin,et al.  End-point corrected trapezoidal quadrature rules for singular functions , 1990 .

[13]  J. N. Lyness,et al.  On the Structure of Fully Symmetric Multidimensional Quadrature Rules , 1979 .

[14]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[15]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[16]  J. N. Lyness,et al.  An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point , 1976 .

[17]  J. C. Aguilar,et al.  High-order corrected trapezoidal quadrature rules for the coulomb potential in three dimensions , 2005 .

[18]  N. Sukumar,et al.  Generalized Duffy transformation for integrating vertex singularities , 2009 .

[19]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[20]  Bradley K. Alpert,et al.  High-order quadratures for integral operators with singular kernels , 1995 .

[21]  Yu Chen,et al.  High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity in 2-D , 2002 .

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .