Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics

We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation $${ i u_t = \Delta u + { 1 \over {\varepsilon^2}} u \left(1 - |u|^2 \right)}$$ in a bounded, simply connected domain $${\Omega\subset {\mathbb{R}^2}}$$ with natural boundary conditions on ∂Ω. Previous rigorous results have shown that for sequences of solutions $${u_\varepsilon}$$ with suitable well-prepared initial data, one can determine limiting vortex trajectories, and moreover that these trajectories satisfy the classical ODE for point vortices in an ideal incompressible fluid. We prove that the same motion law holds for a small, but fixed $${\varepsilon}$$ , and we give estimates of the rate of convergence and the time interval for which the result remains valid. The refined Jacobian estimates mentioned in the title relate the Jacobian J(u) of an arbitrary function $${u\in H^1(\Omega;\mathbb{C})}$$ to its Ginzburg–Landau energy. In the analysis of the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices with great precision, and they also provide a sort of dynamic stability of the set of multi-vortex configurations.

[1]  Robert L. Jerrard,et al.  Ginzburg-landau vortices: weak stability and schrödinger equation dynamics , 1999 .

[2]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[3]  N. Alikakos,et al.  Slow Dynamics for the Cahn‐Hilliard Equation in Higher Space Dimensions: The Motion of Bubbles , 1998 .

[4]  C. Sulem,et al.  On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[5]  N. Tose,et al.  Elliptic boundary value problems in the space of distributions , 1997 .

[6]  Robert L. Jerrard,et al.  Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .

[7]  S. Yau Mathematics and its applications , 2002 .

[8]  S. Baldo,et al.  Functions with prescribed singularities , 2003 .

[9]  V. Klyatskin Sound radiation by a system of vortices , 1966 .

[10]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[11]  S. Gustafson,et al.  Effective dynamics of magnetic vortices , 2003, math/0312438.

[12]  Daniel Spirn,et al.  Vortex Motion Law for the Schrödinger-Ginzburg-Landau Equations , 2003, SIAM J. Math. Anal..

[13]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[14]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[15]  Israel Michael Sigal,et al.  Long-time behaviour of Ginzburg-Landau vortices , 1998 .

[16]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[17]  A. Fetter,et al.  VORTICES IN AN IMPERFECT BOSE GAS. IV. TRANSLATIONAL VELOCITY. , 1966 .

[18]  R. Jerrard Vortex dynamics for the Ginzburg-Landau wave equation , 1999 .

[19]  Fanghua Lin,et al.  Vortex dynamics for the nonlinear wave equation , 1999 .

[20]  M. Pino,et al.  Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality , 2004 .

[21]  The Stability of Magnetic Vortices , 1999, math/9904158.

[22]  Halil Mete Soner,et al.  The Jacobian and the Ginzburg-Landau energy , 2002 .

[23]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[24]  I. Sigal,et al.  The Stability of Magnetic VorticesRID="*"ID="*"Research on this paper was supported by NSERC under grant N7901 , 2000 .

[25]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .

[26]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[27]  J. Xin,et al.  On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .

[28]  F. Béthuel,et al.  Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics , 2005 .

[29]  Tai-Peng Tsai,et al.  Relaxation of excited states in nonlinear Schrödinger equations , 2001 .

[30]  I. Shafrir,et al.  REMARKS ON SOLUTIONS OF - DELTA U = (1-U2) U IN R2 , 1994 .

[31]  Jean-Michel Coron,et al.  Harmonic maps with defects , 1986 .

[32]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[33]  D. Stuart Dynamics of Abelian Higgs vortices in the near Bogomolny regime , 1994 .

[34]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[35]  Daniel Spirn,et al.  Refined Jacobian estimates for Ginzburg-Landau functionals , 2007 .

[36]  L. Bronsard,et al.  Slow motion in the gradient theory of phase transitions via energy and spectrum , 1997 .