Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries

[1]  Kun Feng,et al.  Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. , 2018, Small.

[2]  Y. Yue,et al.  Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries , 2016 .

[3]  P. Müller‐Buschbaum GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films , 2016 .

[4]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[5]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[6]  C. Chung,et al.  Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries , 2014 .

[7]  Nazlim Bagcivan,et al.  Synthesis of nano-structured HPPMS CrN/AlN coatings , 2013 .

[8]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[9]  F. Castro,et al.  Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying , 2012 .

[10]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[11]  H. Ahn,et al.  Patterned Si thin film electrodes for enhancing structural stability , 2012, Nanoscale Research Letters.

[12]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[13]  Chunjoong Kim,et al.  Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries , 2006 .

[14]  Michael D. Fleischauer,et al.  Combinatorial Investigations of Si-M ( M = Cr + Ni , Fe , Mn ) Thin Film Negative Electrode Materials , 2005 .

[15]  Mo-hua Yang,et al.  Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive , 2005 .

[16]  W. M. Rainforth,et al.  Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings , 2004 .

[17]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[18]  Y. Yoon,et al.  Electrochemical characteristics of Co–Si alloy and multilayer films as anodes for lithium ion microbatteries , 2003 .

[19]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[20]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[21]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[22]  A. Rockett,et al.  Evolution of microstructure in nanocrystalline Mo‐Cu thin films during thermal annealing , 1995 .

[23]  A. Rockett,et al.  Structural properties of metastable Cu-Mo solid solution thin films synthesized by magnetron sputtering , 1995 .

[24]  S. Miyazaki,et al.  Amorphous Silicon Superlattice Thin Film Transistors , 1987 .

[25]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[26]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[27]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[28]  Z. Wen,et al.  Cu-doped Silicon Film as Anode for Lithium ion Batteries Prepared by Ion-beam Sputtering , 2013, International Journal of Electrochemical Science.

[29]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[30]  G. Radnóczi,et al.  Growth of Ge/Si Amorphous Superlattices by Dual-Target DC Magnetron Sputtering , 1992 .