The high-bias stability of monatomic chains

For the metals Au, Pt and Ir it is possible to form freely suspended monatomic chains between bulk electrodes. The atomic chains sustain very large current densities, but finally fail at high bias. We investigate the breaking mechanism, that involves current-induced heating of the atomic wires and electromigration forces. We find good agreement of the observations for Au based on models due to Todorov and co-workers. The high-bias breaking of atomic chains for Pt can also be described by the models, although here the parameters have not been obtained independently. In the limit of long chains the breaking voltage decreases inversely proportional to the length.

[1]  M. Zwolak,et al.  Local Heating in Nanoscale Conductors , 2003, cond-mat/0302425.

[2]  A. Sutton,et al.  Inelastic current-voltage spectroscopy of atomic wires , 2003 .

[3]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[4]  F. Flores,et al.  First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance , 2002, cond-mat/0211488.

[5]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[6]  N. Agraït,et al.  Electron transport and phonons in atomic wires , 2002 .

[7]  J. M. Taylor,et al.  Origin of current-induced forces in an atomic gold wire: A first-principles study , 2002, cond-mat/0207401.

[8]  T. N. Todorov,et al.  Tight-binding simulation of current-carrying nanostructures , 2002 .

[9]  Zhenan Bao,et al.  Conductance of small molecular junctions. , 2002, Physical review letters.

[10]  G. Rubio‐Bollinger,et al.  Calibration of the length of a chain of single gold atoms , 2002, cond-mat/0202349.

[11]  N. Agraït,et al.  Onset of energy dissipation in ballistic atomic wires. , 2001, Physical review letters.

[12]  H. Kempen,et al.  Millisecond dynamics of thermal expansion of mechanically controllable break junction electrodes studied in the tunneling regime , 2001 .

[13]  C. Untiedt,et al.  Common origin for surface reconstruction and the formation of chains of metal atoms. , 2001, Physical review letters.

[14]  Sune R. Bahn,et al.  Mechanical properties and formation mechanisms of a wire of single gold atoms , 2001, cond-mat/0105277.

[15]  A. Sutton,et al.  Current-induced embrittlement of atomic wires. , 2001, Physical review letters.

[16]  G. Wijs,et al.  Bond Scission in a Perfect Polyethylene Chain and the Consequences for the Ultimate Strength , 2000 .

[17]  N. Agraït,et al.  Quantum interference in atomic-sized point contacts , 2000 .

[18]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[19]  K. Jacobsen,et al.  Density Functional Simulation of a Breaking Nanowire , 1999 .

[20]  N. Agraït,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[21]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[22]  J. M. Ruitenbeek,et al.  Characterization of individual conductance steps in metallic quantum point contacts , 1998 .

[23]  Muller,et al.  One-atom point contacts. , 1993, Physical review. B, Condensed matter.

[24]  Muller,et al.  Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. , 1992, Physical review letters.

[25]  V. Chandrasekhar,et al.  Kondo effect and dephasing in low-dimensional metallic systems , 2001 .