Layered polymorph of titanium triiodide

A previously unreported layered spin ½ triangular lattice polymorph of TiI 3 is described, synthesized under 6 GPa of applied pressure at 900  C, but stable at atmospheric pressure. This air-sensitive material has a CdI 2 -type layered structure ( P -3 m 1 (#164), a = 4.012 Å and c = 6.641 Å at 120 K, Z = 1 of Ti 0.667 I 2 ) with an in-plane triangular lattice, related to that of TiI 4 (Ti 0.5 I 2 ). Although the TiI 3 formula is consistent with expectations for a layered honeycomb lattice of spin ½ Ti(III), there is disorder in the crystal structure. Magnetic susceptibility and heat capacity measurements suggest that the material undergoes several low temperature phase transitions.

[1]  R. Cava,et al.  The honeycomb and hyperhoneycomb polymorphs of IrI3 , 2022, Journal of Solid State Chemistry.

[2]  Y. Shimizu,et al.  Zigzag magnetic order in the Kitaev spin-liquid candidate material RuBr3 with a honeycomb lattice , 2022, Physical Review B.

[3]  Y. Shimizu,et al.  Strongly Electron-Correlated Semimetal RuI3 with a Layered Honeycomb Structure , 2021, Journal of the Physical Society of Japan.

[4]  R. Cava,et al.  Honeycomb‐Structure RuI3, A New Quantum Material Related to α‐RuCl3 , 2021, Advanced materials.

[5]  Lunhua He,et al.  Structure and magnetic properties of the S = 3/2 zigzag spin chain antiferromagnet BaCoTe2O7 , 2021, Science China Physics, Mechanics & Astronomy.

[6]  Li Huang,et al.  Orbital-fluctuation freezing and magnetic-nonmagnetic phase transition in α-TiBr3 , 2020 .

[7]  K. Choi,et al.  Kitaev Spin Liquid Candidate OsxCl3 Comprised of Honeycomb Nano-Domains , 2020, 2009.07541.

[8]  Y. Kawazoe,et al.  Magnetic and electronic properties of 2D TiX3 (X = F, Cl, Br and I). , 2020, Physical chemistry chemical physics : PCCP.

[9]  L. Kourkoutis,et al.  Tunable Magnetic Transition to a Singlet Ground State in a 2D Van der Waals Layered Trimerized Kagomé Magnet. , 2019, ACS nano.

[10]  Jiaqiang Yan,et al.  Chemical disorder and spin-liquid-like magnetism in the van der Waals layered 5d transition metal halide Os0.55Cl2 , 2019, Physical Review B.

[11]  R. Cava,et al.  VI3—a New Layered Ferromagnetic Semiconductor , 2018, Advanced materials.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[14]  M. McGuire Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides , 2017, 1704.08225.

[15]  J. Brink,et al.  Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.

[16]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[17]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[18]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[19]  H. Kee,et al.  α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice , 2014, 1403.0883.

[20]  S. Smaalen,et al.  Low- and High-Temperature Crystal Structures of TiI3. , 2009 .

[21]  J. Angelkort,et al.  Low- and high-temperature crystal structures of TiI{sub 3} , 2009 .

[22]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[23]  T. Rojo,et al.  Magnetic properties of the ordered double perovskite Sr2MnTeO6 , 2006 .

[24]  H. Hillebrecht,et al.  About Trihalides with TiI3 Chain Structure: Proof of Pair Forming of Cations in β‐RuCl3 and RuBr3 by Temperature Dependent Single Crystal X‐Ray Analyses. , 2005 .

[25]  H. Hillebrecht,et al.  About Trihalides with TiI3 Chain Structure: Proof of Pair Forming of Cations in β‐RuCl3 and RuBr3 by Temperature Dependent Single Crystal X‐ray Analyses , 2004 .

[26]  H. Cantow,et al.  Scanning tunneling and atomic force microscopy study of layered transition metal halides Nb[sub 3]X[sub 8] (X = Cl, Br, I) , 1993 .

[27]  S. Troyanov Crystal structure of the low-temperature modification of TiI4 , 1993 .

[28]  Anonymous Scanning‐tunneling and atomic‐force microscopy , 1991, Eos, Transactions American Geophysical Union.

[29]  Y. Ishihara,et al.  Magnetic study of a phase transition at 217 K in α-TiCl3 , 1990 .

[30]  R. Kniep,et al.  Polymorphie von Tellur(IV)-iodid/ Polymorphism of Tellurium(IV) Iodide , 1988 .

[31]  W. F. Libby,et al.  Crystal Structure, Solubility, and Electronic Spectrum of Titanium Tetraiodide , 1979 .

[32]  C. A. Emeis,et al.  Far-infrared investigation of the phase transition at 217 K in layer-structured TiCl3 , 1975 .

[33]  J. Reid,et al.  DOI : will be inserted by hand later ) X-ray emission from expanding cocoons , 2008 .

[34]  W. Wooster,et al.  Crystal structure of , 2005 .

[35]  G. C. Trigunayat,et al.  Crystal structure of six new polytypes of cadmium iodide , 1970 .

[36]  K. Brodersen Structure of β‐RuCl3, RuI3, IrBr3, and IrI3 , 1968 .

[37]  W. E. Gardner,et al.  X-Ray, infrared, and magnetic studies of α- and β-ruthenium trichloride , 1967 .

[38]  A. Braibanti,et al.  Refinement of the crystal structure of NiCl2 and of unit-cell parameters of some anhydrous chlorides of divalent metals , 1963 .

[39]  P. Corradini,et al.  The different crystalline modifications of TiCl3, a catalyst component for the polymerization of α‐olefins. I: α‐, β‐, γ‐TiCl3. II: δ‐TiCl3 , 1961 .