On the Effective Region of Convergence of the Decomposition Series Solution

In this paper we investigate the domain of convergence of the Adomian series solution based on the computational results for several examples. We demonstrate how the domain of convergence can be extended by introducing a parameter c in the definition of the zeroth-order and first-order solution components u0 and u1. Furthermore we generalize the concept of the convergence parameter c from a two-term partition of the initial condition to a multiple-term partition with the design of expanding the domain of convergence of the Adomian series solutions for nonlinear differential equations.

[1]  T. G. Coleman,et al.  Numerical Integration , 2019, Numerical Methods for Engineering An introduction using MATLAB® and computational electromagnetics examples.

[2]  Randolph Rach,et al.  New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods , 2011, Appl. Math. Comput..

[3]  A. Wazwaz Linear and Nonlinear Integral Equations: Methods and Applications , 2011 .

[4]  Ahmed Abdelrazec,et al.  Convergence of the Adomian decomposition method for initial‐value problems , 2011 .

[5]  Yinping Liu,et al.  A MAPLE package of new ADM-Padé approximate solution for nonlinear problems , 2011, Appl. Math. Comput..

[6]  Jun-Sheng Duan,et al.  Convenient analytic recurrence algorithms for the Adomian polynomials , 2011, Appl. Math. Comput..

[7]  Randolph Rach,et al.  Near-field and far-field approximations by the Adomian and asymptotic decomposition methods , 2011, Appl. Math. Comput..

[8]  Jun-Sheng Duan,et al.  An efficient algorithm for the multivariable Adomian polynomials , 2010, Appl. Math. Comput..

[9]  Jun-Sheng Duan,et al.  Recurrence triangle for Adomian polynomials , 2010, Appl. Math. Comput..

[10]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[11]  M. Dehghan,et al.  The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique , 2009 .

[12]  M. Azreg-Aïnou,et al.  A developed new algorithm for evaluating Adomian polynomials , 2009, 0906.0244.

[13]  Randolph Rach,et al.  A new definition of the Adomian polynomials , 2008, Kybernetes.

[14]  Mehdi Dehghan,et al.  The solution of coupled Burgers' equations using Adomian-Pade technique , 2007, Appl. Math. Comput..

[15]  Jafar Biazar,et al.  An improvement to an alternate algorithm for computing Adomian polynomials in special cases , 2006, Appl. Math. Comput..

[16]  Yonggui Zhu,et al.  A new algorithm for calculating Adomian polynomials , 2005, Appl. Math. Comput..

[17]  Fawzi Abdelwahid,et al.  A mathematical model of Adomian polynomials , 2003, Appl. Math. Comput..

[18]  Jafar Biazar,et al.  An alternate algorithm for computing Adomian polynomials in special cases , 2003, Appl. Math. Comput..

[19]  C. Dang,et al.  An aftertreatment technique for improving the accuracy of Adomian's decomposition method , 2002 .

[20]  S. E. Serrano,et al.  Engineering Uncertainty and Risk Analysis: A Balanced Approach to Probability, Statistics, Stochastic Modeling, and Stochastic Differential Equations , 2001 .

[21]  Abdul-Majid Wazwaz,et al.  A new modification of the Adomian decomposition method for linear and nonlinear operators , 2001, Appl. Math. Comput..

[22]  A. Wazwaz A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems , 2001 .

[23]  Abdul-Majid Wazwaz,et al.  A new algorithm for solving differential equations of Lane-Emden type , 2001, Appl. Math. Comput..

[24]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[25]  Jianhong Wu,et al.  Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation , 2000, Appl. Math. Comput..

[26]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[27]  George Adomian,et al.  Numerical integration, analytic continuation, and decomposition , 1997 .

[28]  Y. Cherruault,et al.  Practical formulae for the calculus of multivariable adomian polynomials , 1995 .

[29]  G. Adomian,et al.  On the analytic solution of the lane-emden equation , 1995 .

[30]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[31]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[32]  G. Adomian,et al.  Noise terms in decomposition solution series , 1992 .

[33]  George Adomian,et al.  Generalization of adomian polynomials to functions of several variables , 1992 .

[34]  George Adomian,et al.  An Efficient Methodology for the Physical Sciences , 1991 .

[35]  George Adomian,et al.  Nonlinear Stochastic Systems Theory and Applications to Physics , 1988 .

[36]  G. Adomian An adaptation of the decomposition method for asymptotic solutions , 1988 .

[37]  G. Adomian Nonlinear Stochastic Operator Equations , 1986 .

[38]  George Adomian,et al.  The noisy convergence phenomena in decomposition method solutions , 1986 .

[39]  Randolph Rach,et al.  A convenient computational form for the Adomian polynomials , 1984 .

[40]  K. Scott,et al.  Approximate Analytical Solutions for Models of Three-Dimensional Electrodes by Adomian's Decomposition Method , 2007 .

[41]  Z An,et al.  New Ideas for Proving Convergence of Decomposition Methods , 2003 .

[42]  G. Adomian,et al.  A modified decomposition , 1992 .

[43]  George Adomian,et al.  Numerical algorithms and decomposition , 1991 .

[44]  J. Willems Stochastic systems , 1986 .

[45]  G. Adomian,et al.  Inversion of nonlinear stochastic operators , 1983 .