Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide

Nitrogen–vacancy centres offer significant promise as nanoscale magnetometers. A light-trapping diamond waveguide is demonstrated, enhancing the temperature and magnetic field sensitivity of such centres by three orders of magnitude.

[1]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[2]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[3]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[4]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[5]  R. Fagaly Superconducting quantum interference device instruments and applications , 2006 .

[6]  Markus B. Raschke,et al.  Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies , 2006 .

[7]  M. Hayashi,et al.  One- and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study. , 2008, The Journal of chemical physics.

[8]  F. Jelezko,et al.  Theory of the ground state spin of the NV- center in diamond: I. Fine structure, hyperfine structure, and interactions with electric, magnetic and strain fields , 2011 .

[9]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[10]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[11]  A. Edelstein Advances in magnetometry , 2007 .

[12]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[13]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[14]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[15]  D. J. Saunders,et al.  Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond , 2014, 1408.7045.

[16]  S. Shikata,et al.  High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. , 2012, Physical review letters.

[17]  Susumu Takahashi,et al.  Spin decoherence and electron spin bath noise of a nitrogen-vacancy center in diamond , 2012, 1209.3365.

[18]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[19]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[20]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[21]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[22]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[23]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[24]  P. Cappellaro,et al.  Coherence of nitrogen-vacancy electronic spin ensembles in diamond , 2010, 1006.4219.

[25]  D. Englund,et al.  Time-keeping with electron spin states in diamond , 2011, 1109.3241.

[26]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[27]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[28]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[29]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[30]  D. Budker,et al.  Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. , 2014, Physical review letters.

[31]  Paola Cappellaro,et al.  Stable three-axis nuclear-spin gyroscope in diamond , 2012, 1205.1494.

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.