The Computational Origin of Representation

Each of our theories of mental representation provides some insight into how the mind works. However, these insights often seem incompatible, as the debates between symbolic, dynamical, emergentist, sub-symbolic, and grounded approaches to cognition attest. Mental representations—whatever they are—must share many features with each of our theories of representation, and yet there are few hypotheses about how a synthesis could be possible. Here, I develop a theory of the underpinnings of symbolic cognition that shows how sub-symbolic dynamics may give rise to higher-level cognitive representations of structures, systems of knowledge, and algorithmic processes. This theory implements a version of conceptual role semantics by positing an internal universal representation language in which learners may create mental models to capture dynamics they observe in the world. The theory formalizes one account of how truly novel conceptual content may arise, allowing us to explain how even elementary logical and computational operations may be learned from a more primitive basis. I provide an implementation that learns to represent a variety of structures, including logic, number, kinship trees, regular languages, context-free languages, domains of theories like magnetism, dominance hierarchies, list structures, quantification, and computational primitives like repetition, reversal, and recursion. This account is based on simple discrete dynamical processes that could be implemented in a variety of different physical or biological systems. In particular, I describe how the required dynamics can be directly implemented in a connectionist framework. The resulting theory provides an “assembly language” for cognition, where high-level theories of symbolic computation can be implemented in simple dynamics that themselves could be encoded in biologically plausible systems.

[1]  M. Sigman,et al.  The human Turing machine: a neural framework for mental programs , 2011, Trends in Cognitive Sciences.

[2]  A. Gopnik,et al.  Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory. , 2012, Psychological bulletin.

[3]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[4]  Michael K. Tanenhaus,et al.  Parsing in a Dynamical System: An Attractor-based Account of the Interaction of Lexical and Structural Constraints in Sentence Processing , 1997 .

[5]  Ingo Brigandt Conceptual Role Semantics, the Theory Theory, and Conceptual Change , 2004 .

[6]  Jordan B. Pollack,et al.  Implications of Recursive Distributed Representations , 1988, NIPS.

[7]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[8]  Noah D. Goodman Learning and the language of thought , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[9]  S. Strazza,et al.  I Am a Strange Loop , 2008 .

[10]  L. Schulz,et al.  Children balance theories and evidence in exploration, explanation, and learning , 2012, Cognitive Psychology.

[11]  Jürgen Schmidhuber,et al.  Gödel Machines: Fully Self-referential Optimal Universal Self-improvers , 2007, Artificial General Intelligence.

[12]  John T. Kearns Combinatory Logic with Discriminators , 1969, J. Symb. Log..

[13]  Lance J. Rips,et al.  Do children learn the integers by induction? , 2008, Cognition.

[14]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[15]  Alan M. Turing,et al.  Computability and λ-definability , 1937, Journal of Symbolic Logic.

[16]  Joshua S. Rule,et al.  The Child as Hacker , 2020, Trends in Cognitive Sciences.

[17]  Susan Carey,et al.  The emergence of reasoning by the disjunctive syllogism in early childhood , 2016, Cognition.

[18]  Ross W. Gayler,et al.  Vector symbolic architectures are a viable alternative for Jackendoff's challenges , 2006, Behavioral and Brain Sciences.

[19]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[20]  Wenwu Zhu,et al.  Deep Learning on Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[21]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[22]  Lawrence W. Barsalou,et al.  Grounded Cognition: Past, Present, and Future , 2010, Top. Cogn. Sci..

[23]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[24]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[25]  J. Fodor The Language of Thought , 1980 .

[26]  Luca L. Bonatti,et al.  Shruti's Ontology is Representational , 1996, Behavioral and Brain Sciences.

[27]  Mariano Sigman,et al.  The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers , 2017, PLoS Comput. Biol..

[28]  Gilbert Harman,et al.  Conceptual Role Semantics , 1982, Notre Dame J. Formal Log..

[29]  Andrew McCallum,et al.  Compositional Vector Space Models for Knowledge Base Inference , 2015, AAAI Spring Symposia.

[30]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[31]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[32]  Raymond J. Mooney,et al.  Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus , 2007, ACL.

[33]  Sameer Singh,et al.  Low-Dimensional Embeddings of Logic , 2014, ACL 2014.

[34]  Ernest Davis,et al.  The scope and limits of simulation in automated reasoning , 2016, Artif. Intell..

[35]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[36]  Christopher Potts,et al.  Tree-Structured Composition in Neural Networks without Tree-Structured Architectures , 2015, CoCo@NIPS.

[37]  Nils J. Nilsson,et al.  The Quest for Artificial Intelligence , 2009 .

[38]  Eric G. Wagner Uniformly reflexive structures: On the nature of gödelizations and relative computability , 1969 .

[39]  Michael I. Jordan,et al.  Learning Programs: A Hierarchical Bayesian Approach , 2010, ICML.

[40]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[41]  David J. Chalmers,et al.  On implementing a computation , 1994, Minds and Machines.

[42]  P. Smolensky THE CONSTITUENT STRUCTURE OF CONNECTIONIST MENTAL STATES: A REPLY TO FODOR AND PYLYSHYN , 2010 .

[43]  Donald D. Hoffman,et al.  The Interface Theory of Perception , 2015, Psychonomic bulletin & review.

[44]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[45]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[46]  Noah D. Goodman,et al.  The logical primitives of thought: Empirical foundations for compositional cognitive models. , 2016, Psychological review.

[47]  Brie Gertler,et al.  UNDERSTANDING THE INTERNALISM‐EXTERNALISM DEBATE: WHAT IS THE BOUNDARY OF THE THINKER? , 2012 .

[48]  Ross W. Gayler Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience , 2004, ArXiv.

[49]  William A. Woods,et al.  Procedural semantics for a question-answering machine , 1899, AFIPS Fall Joint Computing Conference.

[50]  Jürgen Schmidhuber Discovering Solutions with Low Kolmogorov Complexity and High Generalization Capability , 1995, ICML.

[51]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[52]  Zenon W. Pylyshyn,et al.  What the Mind’s Eye Tells the Mind’s Brain: A Critique of Mental Imagery , 1973 .

[53]  E. Markman Categorization and naming in children , 1989 .

[54]  J. Roger Hindley,et al.  Lambda-Calculus and Combinators in the 20th Century , 2009, Logic from Russell to Church.

[55]  S. Laurence,et al.  Radical concept nativism , 2002, Cognition.

[56]  Robert Jacobs,et al.  A Hierarchical Probabilistic Language-of-Thought Model of Human Visual Concept Learning , 2016, CogSci.

[57]  W A Woods,et al.  Procedural Semantics as a Theory of Meaning. , 1981 .

[58]  L. Rips,et al.  Can statistical learning bootstrap the integers? , 2013, Cognition.

[59]  Nicolas D. Goodman A simplification of combinatory Logic , 1972, J. Symb. Log..

[60]  Mark Steedman,et al.  Inducing Probabilistic CCG Grammars from Logical Form with Higher-Order Unification , 2010, EMNLP.

[61]  S. Laurence,et al.  The Conceptual Mind: New Directions in the Study of Concepts , 2015 .

[62]  Paul Smolensky,et al.  Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems , 1990, Artif. Intell..

[63]  Nina Gierasimczuk,et al.  The Problem of Learning the Semantics of Quantifiers , 2007, TbiLLC.

[64]  R. Jacobs,et al.  Transfer of object category knowledge across visual and haptic modalities: Experimental and computational studies , 2013, Cognition.

[65]  W Tecumseh Fitch,et al.  Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition. , 2014, Physics of life reviews.

[66]  L. Clapp Is even thought compositional? , 2012 .

[67]  R. Beer Dynamical approaches to cognitive science , 2000, Trends in Cognitive Sciences.

[68]  J. Siskind A computational study of cross-situational techniques for learning word-to-meaning mappings , 1996, Cognition.

[69]  Lawrence W. Barsalou,et al.  Perceptions of perceptual symbols , 1999, Behavioral and Brain Sciences.

[70]  Mariano Sigman,et al.  Bayesian validation of grammar productions for the language of thought , 2018, PloS one.

[71]  Jürgen Schmidhuber,et al.  The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions , 2002, COLT.

[72]  Andrew McCallum,et al.  Compositional Vector Space Models for Knowledge Base Completion , 2015, ACL.

[73]  L. Rips The Psychology of Proof: Deductive Reasoning in Human Thinking , 1994 .

[74]  Noah D. Goodman,et al.  Theory learning as stochastic search in the language of thought , 2012 .

[75]  Daniel M Wolpert,et al.  Internal Models in Biological Control , 2019, Annu. Rev. Control. Robotics Auton. Syst..

[76]  Leonid A. Levin,et al.  Randomness Conservation Inequalities; Information and Independence in Mathematical Theories , 1984, Inf. Control..

[77]  J. Fodor,et al.  Connectionism and the problem of systematicity: Why Smolensky's solution doesn't work , 1990, Cognition.

[78]  Robert A. Jacobs,et al.  From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach , 2015, PLoS Comput. Biol..

[79]  Nathan Intrator,et al.  Towards structural systematicity in distributed, statically bound visual representations , 2003, Cogn. Sci..

[80]  Tony A. Plate,et al.  Holographic reduced representations , 1995, IEEE Trans. Neural Networks.

[81]  C. Gallistel,et al.  Memory and the Computational Brain , 2009 .

[82]  Shimon Edelman,et al.  Renewing the respect for similarity , 2012, Front. Comput. Neurosci..

[83]  Andrea E. Martin,et al.  Predicate learning in neural systems: Discovering latent generative structures , 2018, ArXiv.

[84]  John Dinsmore,et al.  The symbolic and connectionist paradigms : closing the gap , 1992 .

[85]  Thomas Given-Wilson,et al.  A combinatory account of internal structure , 2011, The Journal of Symbolic Logic.

[86]  Robert A. Jacobs,et al.  A Rational Analysis of the Acquisition of Multisensory Representations , 2012, Cogn. Sci..

[87]  Robert F. Hadley The Problem of Rapid Variable Creation , 2009, Neural Computation.

[88]  Nick Chater,et al.  Programs as Causal Models: Speculations on Mental Programs and Mental Representation , 2013, Cogn. Sci..

[89]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[90]  Irene Heim,et al.  Semantics in generative grammar , 1998 .

[91]  Susan Stepney,et al.  When does a physical system compute? , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Alvin I. Goldman,et al.  Précis of Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading , 2006 .

[93]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[94]  S. Carey The Origin of Concepts , 2000 .

[95]  K. J. Craik,et al.  The nature of explanation , 1944 .

[96]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[97]  T. van Gelder The dynamical hypothesis in cognitive science. , 1998, The Behavioral and brain sciences.

[98]  Michael J. Spivey,et al.  The Continuity Of Mind , 2008 .

[99]  Richard Montague,et al.  The Proper Treatment of Quantification in Ordinary English , 1973 .

[100]  Pauline Jacobson Towards a Variable-Free Semantics , 1999 .

[101]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[102]  W. Quine Main trends in recent philosophy: two dogmas of empiricism. , 1951 .

[103]  Cristian S. Calude Randomness And Complexity, from Leibniz To Chaitin , 2007 .

[104]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[105]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[106]  Thomas L. Griffiths,et al.  A Rational Analysis of Rule-Based Concept Learning , 2008, Cogn. Sci..

[107]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[108]  R. Jackendoff Foundations of Language: Brain, Meaning, Grammar, Evolution , 2002 .

[109]  R. Jacobs,et al.  Learning abstract visual concepts via probabilistic program induction in a Language of Thought , 2017, Cognition.

[110]  Gilbert Harman,et al.  Nonsolipsistic) Conceptual Role Semantics , 1999 .

[111]  Noah D. Goodman,et al.  Learning a theory of causality. , 2011, Psychological review.

[112]  P. Johnson-Laird Procedural semantics , 1977, Cognition.

[113]  William L. Ditto,et al.  DYNAMICS BASED COMPUTATION , 1998 .

[114]  C. Drews THE CONCEPT AND DEFINITION OF DOMINANCE IN ANIMAL BEHAVIOUR , 1993 .

[115]  T. Gelder,et al.  What Might Cognition Be, If Not Computation? , 1995 .

[116]  Mark Steedman,et al.  Plans, Affordances, And Combinatory Grammar , 2002 .

[117]  Wilfrid S. Sellars Science, perception, and reality , 1963 .

[118]  Mark Steedman,et al.  A Probabilistic Model of Syntactic and Semantic Acquisition from Child-Directed Utterances and their Meanings , 2012, EACL.

[119]  Lance J. Rips,et al.  Giving the boot to the bootstrap: How not to learn the natural numbers , 2006, Cognition.

[120]  J. Tenenbaum,et al.  A probabilistic model of theory formation , 2010, Cognition.

[121]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[122]  Derek C. Penn,et al.  Darwin's mistake: Explaining the discontinuity between human and nonhuman minds , 2008, Behavioral and Brain Sciences.

[123]  Murat Aydede,et al.  Language of Thought: The Connectionist Contribution , 1997, Minds and Machines.

[124]  J. Feldman Symbolic representation of probabilistic worlds , 2012, Cognition.

[125]  W. Ashby,et al.  Every Good Regulator of a System Must Be a Model of That System , 1970 .

[126]  Todd M. Gureckis,et al.  Question Asking as Program Generation , 2017, NIPS.

[127]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[128]  Hartry Field Logic, Meaning, and Conceptual Role , 1977 .

[129]  Bradford Z. Mahon,et al.  What is embodied about cognition? , 2015, Language, cognition and neuroscience.

[130]  Edward E. Smith,et al.  Category-Based Induction , 1990 .

[131]  Zenon W. Pylyshyn,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[132]  Francis Jeffry Pelletier,et al.  Representation and Inference for Natural Language: A First Course in Computational Semantics , 2005, Computational Linguistics.

[133]  Martin A. Riedmiller,et al.  Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images , 2015, NIPS.

[134]  Brian Falkenhainer,et al.  The Structure-Mapping Engine * , 2003 .

[135]  D. Chalmers Why Fodor and Pylyshyn Were Wrong: The Simplest Refutation , 1990 .

[136]  Luke S. Zettlemoyer,et al.  Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars , 2005, UAI.

[137]  Herbert Jaeger,et al.  From Continuous Dynamics to Symbols , 1999 .

[138]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[139]  D. Medin,et al.  On the Interaction of Theory and Data in Concept Learning , 1994, Cogn. Sci..

[140]  Stefano Ermon,et al.  Graphite: Iterative Generative Modeling of Graphs , 2018, ICML.

[141]  Robert A. Jacobs,et al.  Four Problems Solved by the Probabilistic Language of Thought , 2016 .

[142]  Chris Okasaki,et al.  Purely functional data structures , 1998 .

[143]  J. Roger Hindley,et al.  Introduction to Combinators and Lambda-Calculus , 1986 .

[144]  H. Wellman,et al.  Cognitive development: foundational theories of core domains. , 1992, Annual review of psychology.

[145]  N. Chater,et al.  Simplicity: a unifying principle in cognitive science? , 2003, Trends in Cognitive Sciences.

[146]  S. Laurence,et al.  Concepts: Core Readings , 1999 .

[147]  J. Feldman The Simplicity Principle in Human Concept Learning , 2003 .

[148]  Mark Steedman,et al.  The syntactic process , 2004, Language, speech, and communication.

[149]  Nick Chater,et al.  Identification of probabilities , 2007, Journal of mathematical psychology.

[150]  Chris Dyer,et al.  Neural Arithmetic Logic Units , 2018, NeurIPS.

[151]  N. Chater,et al.  Autonomy, implementation and cognitive architecture: A reply to Fodor and Pylyshyn , 1990, Cognition.

[152]  Michael J. Spivey,et al.  From apples and oranges to symbolic dynamics: a framework for conciliating notions of cognitive representation , 2005, J. Exp. Theor. Artif. Intell..

[153]  Jacob Feldman,et al.  Simplicity and Complexity in Human Concept Learning , 2005 .

[154]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[155]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[156]  Fei Xu Towards a rational constructivist theory of cognitive development. , 2019, Psychological review.

[157]  Dr. Marcus Hutter,et al.  Universal artificial intelligence , 2004 .

[158]  Ivan Bratko,et al.  Prolog Programming for Artificial Intelligence , 1986 .

[159]  Douglas L. Medin,et al.  On the Interaction of Theory and Data in Concept Learning , 1994, Cogn. Sci..

[160]  Vladimir M. Sloutsky,et al.  From Perceptual Categories to Concepts: What Develops? , 2010, Cogn. Sci..

[161]  Francis Mollica,et al.  Towards semantically rich and recursive word learning models , 2015, CogSci.

[162]  F. Velde,et al.  Neural blackboard architectures of combinatorial structures in cognition , 2006 .

[163]  David J. Chalmers,et al.  Does a rock implement every finite-state automaton? , 1996, Synthese.

[164]  Ned Block,et al.  Advertisement for a Semantics for Psychology , 1987 .

[165]  Z. Harris,et al.  Foundations of language , 1941 .

[166]  Jacob Feldman,et al.  Minimization of Boolean complexity in human concept learning , 2000, Nature.

[167]  John E. Hummel,et al.  Distributed representations of structure: A theory of analogical access and mapping. , 1997 .

[168]  Hans Joerg Tiede,et al.  Identifiability in the Limit of Context-Free Generalized Quantifiers , 1999 .

[169]  T. Kushnir,et al.  Rational constructivism in cognitive development , 2012 .

[170]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[171]  Ricarda I. Schubotz,et al.  Prediction, Cognition and the Brain , 2009, Front. Hum. Neurosci..

[172]  Gerald J. Sussman,et al.  Structure and interpretation of computer programs , 1985, Proceedings of the IEEE.

[173]  J. Fodor Lot 2: The Language of Thought Revisited , 2008 .

[174]  R. French The computational modeling of analogy-making , 2002, Trends in Cognitive Sciences.

[175]  S. Dehaene,et al.  Bayesian selection of grammar productions for the language of thought , 2017, bioRxiv.

[176]  Barry Jay,et al.  Confusion in the Church-Turing Thesis , 2014, ArXiv.

[177]  Jessica B. Hamrick,et al.  Simulation as an engine of physical scene understanding , 2013, Proceedings of the National Academy of Sciences.

[178]  Michael Stay,et al.  Very Simple Chaitin Machines for Concrete AIT , 2005, Fundam. Informaticae.

[179]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[180]  A. Newell Unified Theories of Cognition , 1990 .

[181]  Joshua B. Tenenbaum,et al.  One-Shot Learning with a Hierarchical Nonparametric Bayesian Model , 2011, ICML Unsupervised and Transfer Learning.

[182]  S. Carey Conceptual Change in Childhood , 1985 .

[183]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[184]  David S. Touretzky,et al.  BoltzCONS: Dynamic Symbol Structures in a Connectionist Network , 1990, Artif. Intell..

[185]  Daeyeol Lee,et al.  Distributed Coding of Actual and Hypothetical Outcomes in the Orbital and Dorsolateral Prefrontal Cortex , 2011, Neuron.

[186]  Ellen M. Markman,et al.  Categorization and Naming in Children: Problems of Induction , 1989 .

[187]  L. Rips Inductive judgments about natural categories. , 1975 .

[188]  J. Barkley Rosser,et al.  Haskell B. Curry and Robert Feys. Combinatory logic. Volume I . With two sections by William Craig. Studies in logic and the foundations of mathematics. North-Holland Publishing Company, Amsterdam1958, xvi + 417 pp. , 1967 .

[189]  Alex Kacelnik,et al.  Ducklings imprint on the relational concept of “same or different” , 2016, Science.

[190]  R. Shepard,et al.  Second-order isomorphism of internal representations: Shapes of states ☆ , 1970 .

[191]  T. Gelder,et al.  The dynamical hypothesis in cognitive science , 1998, Behavioral and Brain Sciences.

[192]  R. Hindley,et al.  History of Lambda-calculus and Combinatory Logic , 2006 .

[193]  G. Miller,et al.  Language and Perception , 1976 .

[194]  R. Zemel,et al.  Neural Relational Inference for Interacting Systems , 2018, ICML.

[195]  Delia Kesner,et al.  Pure Pattern Calculus , 2006, ESOP.

[196]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[197]  Marcin Mostowski,et al.  Computational semantics for monadic quantifiers , 1998, J. Appl. Non Class. Logics.

[198]  John R. Anderson Arguments concerning representations for mental imagery. , 1978 .

[199]  Christopher Potts,et al.  Recursive Neural Networks Can Learn Logical Semantics , 2014, CVSC.

[200]  Gilbert Harman Conceptual Role Semantics , 1982, Notre Dame J. Formal Log..

[201]  J. Tenenbaum,et al.  Word learning as Bayesian inference. , 2007, Psychological review.

[202]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[203]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[204]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[205]  G. Berkeley Essay Towards a New Theory of Vision , 2004 .

[206]  Stevan Harnad,et al.  Symbol grounding problem , 1990, Scholarpedia.

[207]  A. Church,et al.  Some properties of conversion , 1936 .

[208]  J. Tenenbaum,et al.  Probabilistic models of cognition: exploring representations and inductive biases , 2010, Trends in Cognitive Sciences.

[209]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[210]  E. Markman,et al.  Categories and induction in young children , 1986, Cognition.

[211]  Edward Grefenstette,et al.  Towards a Formal Distributional Semantics: Simulating Logical Calculi with Tensors , 2013, *SEMEVAL.

[212]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[213]  D. Gentner,et al.  Structure mapping in analogy and similarity. , 1997 .

[214]  H. Putnam Representation and Reality , 1993 .

[215]  Daniel Whiting Conceptual role semantics , 2006 .

[216]  John Tromp Binary Lambda Calculus and Combinatory Logic , 2006, Kolmogorov Complexity and Applications.

[217]  L. Rips The psychology of knights and knaves , 1989, Cognition.

[218]  Wolfgang Tschacher,et al.  Dynamics, Synergetics, Autonomous Agents: Nonlinear Systems Approaches to Cognitive Psychology and Cognitive Science , 1999 .

[219]  Noah D. Goodman,et al.  Concepts in a Probabilistic Language of Thought , 2014 .

[220]  John R. Searle,et al.  Is the Brain a Digital Computer , 1990 .

[221]  M. Lee Emergent and structured cognition in Bayesian models: comment on Griffiths et al. and McClelland et al. , 2010, Trends in Cognitive Sciences.

[222]  S. Carey Why Theories of Concepts Should Not Ignore the Problem of Acquisition , 2015 .

[223]  D. Hofstadter Gödel, Escher, Bach , 1979 .

[224]  Nick Chater,et al.  The Logical Problem of Language Acquisition: A Probabilistic Perspective , 2010, Cogn. Sci..

[225]  Compositionality: A Connectionist Variation on a Classical Theme , 1990 .

[226]  L. Shastri,et al.  From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony , 1993, Behavioral and Brain Sciences.

[227]  G. Frege Über Sinn und Bedeutung , 1892 .

[228]  Hartry Field,et al.  Science without Numbers , 1983 .

[229]  Lokendra Shastri,et al.  Temporal synchrony, dynamic bindings, and Shruti: A representational but nonclassical model of reflexive reasoning , 1996, Behavioral and Brain Sciences.

[230]  Brian Loar,et al.  Conceptual role and truth-conditions: comments on Harman's paper: "Conceptual role semantics" , 1982, Notre Dame J. Formal Log..

[231]  Shimon Edelman,et al.  A swan, a pike, and a crawfish walk into a bar , 2008, J. Exp. Theor. Artif. Intell..

[232]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[233]  John R. Anderson,et al.  ACT-R: A Theory of Higher Level Cognition and Its Relation to Visual Attention , 1997, Hum. Comput. Interact..

[234]  David J. Chalmers,et al.  Subsymbolic Computation and the Chinese Room , 1992 .

[235]  Logan Grosenick,et al.  Fish can infer social rank by observation alone , 2007, Nature.

[236]  Sudeshna Sinha,et al.  Chaos computing: ideas and implementations , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[237]  Shimon Edelman,et al.  On the nature of minds, or: truth and consequences , 2008, J. Exp. Theor. Artif. Intell..

[238]  Whitney Tabor Recursion and Recursion- Like Structure in Ensembles of Neural Elements , 2011 .

[239]  Whitney Tabor,et al.  A dynamical systems perspective on the relationship between symbolic and non-symbolic computation , 2009, Cognitive Neurodynamics.

[240]  James L. McClelland,et al.  Letting structure emerge: connectionist and dynamical systems approaches to cognition , 2010, Trends in Cognitive Sciences.

[241]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[242]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[243]  J. Fodor Connectionism and the problem of systematicity (continued): why Smolensky's solution still doesn't work , 1997, Cognition.

[244]  Kent Johnson,et al.  ON THE SYSTEMATICITY OF LANGUAGE AND THOUGHT , 2004 .

[245]  Charles Kemp,et al.  The discovery of structural form , 2008, Proceedings of the National Academy of Sciences.

[246]  J. Fodor,et al.  Minds Without Meanings: An Essay on the Content of Concepts , 2014 .

[247]  Marcus Hutter Simulation Algorithms for Computational Systems Biology , 2017, Texts in Theoretical Computer Science. An EATCS Series.

[248]  Steven Piantadosi,et al.  Problems in philosophy of mathematics: A view from cognitive science , 2015 .

[249]  Thomas Kipf Deep learning with graph-structured representations , 2020 .

[250]  P. Johnson-Laird,et al.  Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness , 1985 .

[251]  Jan Martin Jansen,et al.  Church Encoding of Data Types Considered Harmful for Implementations: Functional Pearl , 2014, IFL.

[252]  M. Hegarty Mechanical reasoning by mental simulation , 2004, Trends in Cognitive Sciences.

[253]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[254]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[255]  R. Gordon Folk Psychology as Simulation , 1986 .

[256]  Nick Chater,et al.  The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis , 2010, Cognition.

[257]  G. Marcus The Algebraic Mind: Integrating Connectionism and Cognitive Science , 2001 .

[258]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[259]  A. Gopnik,et al.  Words, thoughts, and theories , 1997 .

[260]  Matt Gardner,et al.  Combining Vector Space Embeddings with Symbolic Logical Inference over Open-Domain Text , 2015, AAAI Spring Symposia.

[261]  Valentina S. Harizanov,et al.  Computability and Definability , 2020 .

[262]  Robert A Jacobs,et al.  Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach , 2014, Psychonomic bulletin & review.

[263]  F. van der Velde,et al.  Neural blackboard architectures of combinatorial structures in cognition , 2006, Behavioral and Brain Sciences.

[264]  Joshua B. Tenenbaum,et al.  Inductive Reasoning: Theory-Based Bayesian Models of Inductive Reasoning , 2007 .

[265]  Christophe Costa Florêncio Learning generalized quantifiers , 2002 .

[266]  Martin Davies,et al.  The mental simulation debate: A progress report , 1996 .

[267]  Paul M. B. Vitányi,et al.  ‘Ideal learning’ of natural language: Positive results about learning from positive evidence , 2007 .

[268]  L. Rips The Psychology of Proof , 1994 .

[269]  Noah D. Goodman,et al.  Bootstrapping in a language of thought: A formal model of numerical concept learning , 2012, Cognition.

[270]  Yarden Katz,et al.  Modeling Semantic Cognition as Logical Dimensionality Reduction , 2008 .

[271]  Ernest Davis,et al.  Representations of commonsense knowledge , 2014, notThenot Morgan Kaufmann series in representation and reasoning.

[272]  Charles Kemp,et al.  Exploring the conceptual universe. , 2012, Psychological review.

[273]  Joshua B. Tenenbaum,et al.  Bootstrapping in a language of thought: A formal model of conceptual change in number word learning , 2012 .

[274]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[275]  Christopher Potts,et al.  Learning Distributed Word Representations for Natural Logic Reasoning , 2014, AAAI Spring Symposia.

[276]  Kenneth D. Forbus,et al.  Computational models of analogy. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[277]  J. Tenenbaum,et al.  Theory-based Bayesian models of inductive learning and reasoning , 2006, Trends in Cognitive Sciences.

[278]  Frank Jäkel,et al.  Solving Bongard Problems with a Visual Language and Pragmatic Reasoning , 2018, ArXiv.

[279]  Rocky Ross,et al.  Mental models , 2004, SIGA.

[280]  T. Kushnir Developing a concept of choice. , 2012, Advances in child development and behavior.

[281]  Paul Smolensky,et al.  Subsymbolic Computation Theory for the Human Intuitive Processor , 2012, CiE.

[282]  Noam Chomsky,et al.  The faculty of language: what is it, who has it, and how did it evolve? , 2002 .

[283]  Elizabeth F. Shipley,et al.  Categories, hierarchies, and induction , 1993 .