IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells

[1]  J. Knight,et al.  Interferon-Induced Transmembrane Protein 3 Genetic Variant rs12252-C Associated With Disease Severity in Coronavirus Disease 2019 , 2020, The Journal of infectious diseases.

[2]  S. Manalis,et al.  Non-invasive monitoring of single-cell mechanics by acoustic scattering , 2019, Nature Methods.

[3]  C. Rice,et al.  IFITM3 directly engages and shuttles incoming virus particles to lysosomes , 2019, Nature Chemical Biology.

[4]  C. Robinson,et al.  PIP2 stabilises active states of GPCRs and enhances the selectivity of G-protein coupling , 2018, Nature.

[5]  L. Staudt,et al.  A multiprotein supercomplex controlling oncogenic signalling in lymphoma , 2018, Nature.

[6]  A. McMichael,et al.  Lack of Truncated IFITM3 Transcripts in Cells Homozygous for the rs12252-C Variant That is Associated With Severe Influenza Infection , 2018, The Journal of infectious diseases.

[7]  Jinhong Chang,et al.  Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses , 2017, Journal of Virology.

[8]  Jumin Lee,et al.  CHARMM‐GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides , 2017, J. Comput. Chem..

[9]  Y. Li,et al.  Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma , 2017, Thoracic cancer.

[10]  S. Frietze,et al.  Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL , 2017, The Journal of experimental medicine.

[11]  M. D. Den Boer,et al.  Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome , 2017, The Journal of experimental medicine.

[12]  T. Graeber,et al.  Metabolic gatekeeper function of B-lymphoid transcription factors , 2016, Nature.

[13]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[14]  M. Diamond,et al.  The Interferon-Stimulated Gene IFITM3 Restricts Infection and Pathogenesis of Arthritogenic and Encephalitic Alphaviruses , 2016, Journal of Virology.

[15]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[16]  C. Tian,et al.  Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3 , 2016, Scientific Reports.

[17]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[18]  Qing-Yu He,et al.  ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization , 2015, Bioinform..

[19]  E. Passegué,et al.  Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia , 2015, Nature Communications.

[20]  M. Farzan,et al.  IFITM-Family Proteins: The Cell's First Line of Antiviral Defense. , 2014, Annual review of virology.

[21]  M. Reth,et al.  B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk , 2014, eLife.

[22]  Nicholas M. Chesarino,et al.  Phosphorylation of the Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its Endocytosis and Ubiquitination* , 2014, The Journal of Biological Chemistry.

[23]  Jiangwen Zhang,et al.  Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia , 2014, Nature Immunology.

[24]  J. Zuber,et al.  Stage-specific control of early B cell development by the transcription factor Ikaros , 2014, Nature Immunology.

[25]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[26]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[27]  Z. Hildenbrand,et al.  Expression of BCR/ABL p210 from a knockin allele enhances bone marrow engraftment without inducing neoplasia. , 2013, Cell reports.

[28]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[29]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[30]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[31]  M. Diamond,et al.  The broad-spectrum antiviral functions of IFIT and IFITM proteins , 2012, Nature Reviews Immunology.

[32]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[33]  O. Elemento,et al.  Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. , 2012, Cancer discovery.

[34]  Paul Kellam,et al.  IFITM3 restricts the morbidity and mortality associated with influenza , 2012, Nature.

[35]  Shilei Ding,et al.  The N-Terminal Region of IFITM3 Modulates Its Antiviral Activity by Regulating IFITM3 Cellular Localization , 2012, Journal of Virology.

[36]  Qiang Li,et al.  KLF4-Mediated Negative Regulation of IFITM3 Expression Plays a Critical Role in Colon Cancer Pathogenesis , 2011, Clinical Cancer Research.

[37]  G. Cheng,et al.  New developments in the induction and antiviral effectors of type I interferon. , 2011, Current opinion in immunology.

[38]  Kevin K Dobbin,et al.  Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. , 2010, Blood.

[39]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[40]  J. Downing,et al.  Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. , 2010, Blood.

[41]  David J. Adams,et al.  The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus , 2009, Cell.

[42]  Ruedi Aebersold,et al.  Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins , 2009, Nature Biotechnology.

[43]  R. Arceci,et al.  Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study , 2009 .

[44]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[45]  D. Murray,et al.  Plasma membrane phosphoinositide organization by protein electrostatics , 2005, Nature.

[46]  J. Downing,et al.  Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. , 2003, Blood.

[47]  L. Staudt,et al.  The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. , 2003, Cancer cell.

[48]  Xiaoli Li,et al.  The physiologic role of CD19 cytoplasmic tyrosines. , 2002, Immunity.

[49]  K. Okkenhaug,et al.  Impaired B and T Cell Antigen Receptor Signaling in p110δ PI 3-Kinase Mutant Mice , 2002, Science.

[50]  M. Fujimoto,et al.  CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. , 2000, Immunity.

[51]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[52]  R. Hodges,et al.  Relationship of sidechain hydrophobicity and α‐helical propensity on the stability of the single‐stranded amphipathic α‐helix , 1995 .

[53]  B. Koller,et al.  Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. , 1995, Immunity.

[54]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[55]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[56]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[57]  A. Kohn,et al.  Early interactions of viruses with cellular membranes. , 1979, Advances in virus research.