Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[n]uril Receptors

At the forefront of the endeavor to understand and manipulate living systems is the design and study of receptors that bind with high affinity and selectivity to specific amino acids, peptides, and proteins. Cucurbit[n]urils are among the most promising class of synthetic receptors for these targets due to their high affinities and selectivities in aqueous media and to the unique combination of electrostatic and hydrophobic interactions that govern binding. The fundamental supramolecular chemistry in this area has been explored in depth, and novel, useful applications are beginning to emerge.

[1]  C. Schmuck How to improve guanidinium cations for oxoanion binding in aqueous solution?: The design of artificial peptide receptors , 2006 .

[2]  George M. Whitesides,et al.  Design, Synthesis, and Characterization of a High-Affinity Trivalent System Derived from Vancomycin and l-Lys-d-Ala-d-Ala , 2000 .

[3]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[4]  Carsten Schmuck Prof.,et al.  Sequence-Dependent Stereoselectivity in the Binding of Tetrapeptides in Water by a Flexible Artificial Receptor† , 2006 .

[5]  Adam R. Urbach,et al.  Multivalent recognition of peptides by modular self-assembled receptors. , 2009, Journal of the American Chemical Society.

[6]  Michael K. Gilson,et al.  A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.

[7]  P. Dervan,et al.  Molecular recognition of DNA by small molecules. , 2001, Bioorganic & medicinal chemistry.

[8]  H. Yin,et al.  Strategien zur Modulation von Protein‐Protein‐Wechselwirkungen mit synthetischen Substanzen , 2005 .

[9]  Rebekah Cook,et al.  Novel platinum(II)-based anticancer complexes and molecular hosts as their drug delivery vehicles. , 2007, Dalton transactions.

[10]  Y. Ko,et al.  Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. , 2008, Chemical communications.

[11]  S. Choi Synthetic Multivalent Molecules , 2004 .

[12]  K. N. Houk,et al.  Bindungsaffinitäten von Wirt‐Gast‐, Protein‐Ligand‐ und Protein‐Übergangszustands‐Komplexen , 2003 .

[13]  G M Whitesides,et al.  A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. , 1998, Science.

[14]  Lyle Isaacs,et al.  Die Cucurbit[n]uril‐Familie , 2005 .

[15]  O. Scherman,et al.  Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. , 2010, Chemical communications.

[16]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[17]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[18]  Md. Alamgir Hossain,et al.  SEQUENCE-SELECTIVE EVALUATION OF PEPTIDE SIDE-CHAIN INTERACTION. NEW ARTIFICIAL RECEPTORS FOR SELECTIVE RECOGNITION IN WATER , 1998 .

[19]  Andrew J. Wilson,et al.  Inhibition of protein-protein interactions using designed molecules. , 2009, Chemical Society reviews.

[20]  Xianfeng Zhang,et al.  Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica. , 2011, Chemistry.

[21]  Min Zhou,et al.  Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. , 2004, Angewandte Chemie.

[22]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[23]  P. Zavalij,et al.  Chiral recognition inside a chiral cucurbituril. , 2007, Angewandte Chemie.

[24]  O. Scherman,et al.  Peptide separation through a CB[8]-mediated supramolecular trap-and-release process. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  Lanti Yang,et al.  Strong and Reversible Monovalent Supramolecular Protein Immobilization , 2010, Chembiochem : a European journal of chemical biology.

[26]  H. Nguyen,et al.  Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. , 2010, Angewandte Chemie.

[27]  Xuesong Wang,et al.  Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit[8]uril. , 2010, Physical chemistry chemical physics : PCCP.

[28]  J. Kilburn,et al.  Synthesis of unsymmetrical tweezer receptor libraries and identification of receptors for lys-D-ala-D-ala in aqueous solution. , 2006, Chemistry.

[29]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[30]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[31]  Y. Ko,et al.  Chiral recognition in cucurbituril cavities. , 2006, Journal of the American Chemical Society.

[32]  W. Nau,et al.  Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. , 2009, Journal of the American Chemical Society.

[33]  C. Chothia The nature of the accessible and buried surfaces in proteins. , 1976, Journal of molecular biology.

[34]  Zhiwei Yang,et al.  Sequence Selective Binding of Peptides by Artificial Receptors in Aqueous Solution , 1998 .

[35]  C. Schmuck,et al.  Sequence-dependent stereoselectivity in the binding of tetrapeptides in water by a flexible artificial receptor. , 2006, Angewandte Chemie.

[36]  Soumyadip Ghosh,et al.  Biological catalysis regulated by cucurbit[7]uril molecular containers. , 2010, Journal of the American Chemical Society.

[37]  W. L. Mock,et al.  Structure and selectivity in host―guest complexes of cucurbituril , 1986 .

[38]  T. Berg Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.

[39]  A. Hamilton,et al.  Pattern recognition of proteins based on an array of functionalized porphyrins. , 2006, Journal of the American Chemical Society.

[40]  L. Isaacs Cucurbit[n]urils: from mechanism to structure and function. , 2009, Chemical communications.

[41]  P. Zavalij,et al.  Cucurbit[10]uril. , 2005, Journal of the American Chemical Society.

[42]  W. Nau,et al.  Effects of cucurbit[7]uril on enzymatic activity. , 2007, Chemical communications.

[43]  W. L. Mock,et al.  Host-guest binding capacity of cucurbituril , 1983 .

[44]  L. Mutihac,et al.  The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry , 2003 .

[45]  H. Pal,et al.  Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pK_a shifts , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[46]  O. Scherman,et al.  A supramolecular route for reversible protein-polymer conjugation , 2011 .

[47]  T. Berg Modulation von Protein‐Protein‐Wechselwirkungen mit niedermolekularen organischen Molekülen , 2003 .

[48]  W. Nau,et al.  Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. , 2010, Organic & biomolecular chemistry.

[49]  Hyung-Kun Lee,et al.  Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. , 2005, Journal of the American Chemical Society.

[50]  Kimoon Kim,et al.  Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. , 2001, Angewandte Chemie.

[51]  S. Ryu,et al.  Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. , 2011, Nature chemistry.

[52]  Andrew G. Leach,et al.  Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. , 2003, Angewandte Chemie.

[53]  Laura L. Kiessling,et al.  Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .

[54]  E. Schollmeyer,et al.  The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations , 1998 .

[55]  Richard Wolfenden,et al.  Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution , 1988 .

[56]  M. Del Pozo,et al.  A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. , 2010, Talanta.

[57]  P. Toogood Inhibition of protein-protein association by small molecules: approaches and progress. , 2002, Journal of medicinal chemistry.

[58]  Lyle Isaacs,et al.  The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.

[59]  Sarit S. Agasti,et al.  Recognition-Mediated Activation of Therapeutic Gold Nanoparticles Inside Living Cells , 2010, Nature chemistry.

[60]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[61]  T. Schrader,et al.  Sequence‐Selective Peptide Recognition with Designed Modules , 2006 .

[62]  G. Klebe,et al.  Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. , 2002, Angewandte Chemie.

[63]  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[64]  W. Nau,et al.  Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. , 2008, Chemistry.

[65]  Dudley H. Williams,et al.  Ligandeninduzierte Bewegungseinschränkung mit Stärkung nichtkovalenter Wechselwirkungen in Rezeptoren und Enzymen: Quelle für Bindungsenergie und katalytische Wirkung , 2004 .

[66]  M. Bowers,et al.  Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin. , 2009, The journal of physical chemistry. A.

[67]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[68]  A. Hamilton,et al.  Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. , 2010, Current opinion in chemical biology.

[69]  Pedro Montes-Navajas,et al.  Cucurbituril complexes cross the cell membrane , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[70]  R. Mutihac,et al.  Complexation behavior of cucurbit[6]uril with short polypeptides , 2005 .

[71]  G. Klebe,et al.  Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren , 2002 .

[72]  H. Pal,et al.  Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket: interplay between cucurbit[7]uril and albumin. , 2008, Chemical communications.

[73]  Yunqian Zhang,et al.  Crystal structures of four host–guest inclusion complexes of α,α′,δ,δ′-tetramethylcucurbit[6]uril and cucurbit[8]uril with some l-amino acids , 2009 .

[74]  N. Wheate Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. , 2008, Journal of inorganic biochemistry.

[75]  A. Kaifer,et al.  A new cucurbit[8]uril-based fluorescent receptor for indole derivatives. , 2007, Chemical communications.

[76]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[77]  H. Schneider Bindungsmechanismen in supramolekularen Komplexen , 2009 .

[78]  Adam R. Urbach,et al.  Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. , 2005, Journal of the American Chemical Society.

[79]  A. Hamilton,et al.  Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.

[80]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .

[81]  Eric V. Anslyn,et al.  Indicator-displacement assays , 2006 .

[82]  S. Choi Synthetic Multivalent Molecules: Concepts and Biomedical Applications , 2004 .

[83]  Adam R. Urbach,et al.  Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host. , 2006, Journal of the American Chemical Society.

[84]  Gisbert Schneider,et al.  Protein-ligand interactions from molecular recognition to drug design , 2003 .

[85]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[86]  H. Pal,et al.  Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. , 2007, Angewandte Chemie.

[87]  Shonagh Walker,et al.  Synthesis, processing and solid state excipient interactions of cucurbit[6]uril and its formulation into tablets for oral drug delivery. , 2010, Molecular pharmaceutics.

[88]  W. Nau,et al.  Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes , 2007, Nature Methods.

[89]  L. Isaacs,et al.  Molecular-recognition properties of a water-soluble cucurbit[6]uril analogue. , 2006, The Journal of organic chemistry.

[90]  Oren A Scherman,et al.  Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. , 2010, Chemistry.

[91]  A. Velders,et al.  Supramolecular au nanoparticle assemblies as optical probes for enzyme-linked immunoassays. , 2011, Small.

[92]  Adam R. Urbach,et al.  Scope of amino acid recognition by cucurbit[8]uril , 2008 .

[93]  M. Fujita,et al.  Sequence-selective recognition of peptides within the single binding pocket of a self-assembled coordination cage. , 2005, Journal of the American Chemical Society.

[94]  A. Hamilton,et al.  Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.

[95]  Kimoon Kim,et al.  Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair. , 2007, Journal of the American Chemical Society.

[96]  W. L. Mock,et al.  Organic ligand-receptor interactions between cucurbituril and alkylammonium ions , 1988 .

[97]  J. McDevitt,et al.  Differential receptors create patterns that distinguish various proteins. , 2005, Angewandte Chemie.

[98]  C. Schmuck,et al.  Dipeptide binding in water by a de novo designed guanidiniocarbonylpyrrole receptor. , 2004, Journal of the American Chemical Society.