Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[n]uril Receptors
暂无分享,去创建一个
[1] C. Schmuck. How to improve guanidinium cations for oxoanion binding in aqueous solution?: The design of artificial peptide receptors , 2006 .
[2] George M. Whitesides,et al. Design, Synthesis, and Characterization of a High-Affinity Trivalent System Derived from Vancomycin and l-Lys-d-Ala-d-Ala , 2000 .
[3] D. Reinhoudt,et al. Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.
[4] Carsten Schmuck Prof.,et al. Sequence-Dependent Stereoselectivity in the Binding of Tetrapeptides in Water by a Flexible Artificial Receptor† , 2006 .
[5] Adam R. Urbach,et al. Multivalent recognition of peptides by modular self-assembled receptors. , 2009, Journal of the American Chemical Society.
[6] Michael K. Gilson,et al. A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.
[7] P. Dervan,et al. Molecular recognition of DNA by small molecules. , 2001, Bioorganic & medicinal chemistry.
[8] H. Yin,et al. Strategien zur Modulation von Protein‐Protein‐Wechselwirkungen mit synthetischen Substanzen , 2005 .
[9] Rebekah Cook,et al. Novel platinum(II)-based anticancer complexes and molecular hosts as their drug delivery vehicles. , 2007, Dalton transactions.
[10] Y. Ko,et al. Sequence recognition and self-sorting of a dipeptide by cucurbit[6]uril and cucurbit[7]uril. , 2008, Chemical communications.
[11] S. Choi. Synthetic Multivalent Molecules , 2004 .
[12] K. N. Houk,et al. Bindungsaffinitäten von Wirt‐Gast‐, Protein‐Ligand‐ und Protein‐Übergangszustands‐Komplexen , 2003 .
[13] G M Whitesides,et al. A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. , 1998, Science.
[14] Lyle Isaacs,et al. Die Cucurbit[n]uril‐Familie , 2005 .
[15] O. Scherman,et al. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles. , 2010, Chemical communications.
[16] Hans-Jörg Schneider,et al. Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.
[17] F. Diederich,et al. Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.
[18] Md. Alamgir Hossain,et al. SEQUENCE-SELECTIVE EVALUATION OF PEPTIDE SIDE-CHAIN INTERACTION. NEW ARTIFICIAL RECEPTORS FOR SELECTIVE RECOGNITION IN WATER , 1998 .
[19] Andrew J. Wilson,et al. Inhibition of protein-protein interactions using designed molecules. , 2009, Chemical Society reviews.
[20] Xianfeng Zhang,et al. Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica. , 2011, Chemistry.
[21] Min Zhou,et al. Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. , 2004, Angewandte Chemie.
[22] Lyle Isaacs,et al. The cucurbit[n]uril family. , 2005, Angewandte Chemie.
[23] P. Zavalij,et al. Chiral recognition inside a chiral cucurbituril. , 2007, Angewandte Chemie.
[24] O. Scherman,et al. Peptide separation through a CB[8]-mediated supramolecular trap-and-release process. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[25] Lanti Yang,et al. Strong and Reversible Monovalent Supramolecular Protein Immobilization , 2010, Chembiochem : a European journal of chemical biology.
[26] H. Nguyen,et al. Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. , 2010, Angewandte Chemie.
[27] Xuesong Wang,et al. Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit[8]uril. , 2010, Physical chemistry chemical physics : PCCP.
[28] J. Kilburn,et al. Synthesis of unsymmetrical tweezer receptor libraries and identification of receptors for lys-D-ala-D-ala in aqueous solution. , 2006, Chemistry.
[29] J. F. Stoddart,et al. Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.
[30] George M Whitesides,et al. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.
[31] Y. Ko,et al. Chiral recognition in cucurbituril cavities. , 2006, Journal of the American Chemical Society.
[32] W. Nau,et al. Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. , 2009, Journal of the American Chemical Society.
[33] C. Chothia. The nature of the accessible and buried surfaces in proteins. , 1976, Journal of molecular biology.
[34] Zhiwei Yang,et al. Sequence Selective Binding of Peptides by Artificial Receptors in Aqueous Solution , 1998 .
[35] C. Schmuck,et al. Sequence-dependent stereoselectivity in the binding of tetrapeptides in water by a flexible artificial receptor. , 2006, Angewandte Chemie.
[36] Soumyadip Ghosh,et al. Biological catalysis regulated by cucurbit[7]uril molecular containers. , 2010, Journal of the American Chemical Society.
[37] W. L. Mock,et al. Structure and selectivity in host―guest complexes of cucurbituril , 1986 .
[38] T. Berg. Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.
[39] A. Hamilton,et al. Pattern recognition of proteins based on an array of functionalized porphyrins. , 2006, Journal of the American Chemical Society.
[40] L. Isaacs. Cucurbit[n]urils: from mechanism to structure and function. , 2009, Chemical communications.
[41] P. Zavalij,et al. Cucurbit[10]uril. , 2005, Journal of the American Chemical Society.
[42] W. Nau,et al. Effects of cucurbit[7]uril on enzymatic activity. , 2007, Chemical communications.
[43] W. L. Mock,et al. Host-guest binding capacity of cucurbituril , 1983 .
[44] L. Mutihac,et al. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry , 2003 .
[45] H. Pal,et al. Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pK_a shifts , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
[46] O. Scherman,et al. A supramolecular route for reversible protein-polymer conjugation , 2011 .
[47] T. Berg. Modulation von Protein‐Protein‐Wechselwirkungen mit niedermolekularen organischen Molekülen , 2003 .
[48] W. Nau,et al. Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. , 2010, Organic & biomolecular chemistry.
[49] Hyung-Kun Lee,et al. Vesicle formed by amphiphilc cucurbit[6]uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. , 2005, Journal of the American Chemical Society.
[50] Kimoon Kim,et al. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host: Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. , 2001, Angewandte Chemie.
[51] S. Ryu,et al. Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. , 2011, Nature chemistry.
[52] Andrew G. Leach,et al. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. , 2003, Angewandte Chemie.
[53] Laura L. Kiessling,et al. Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .
[54] E. Schollmeyer,et al. The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations , 1998 .
[55] Richard Wolfenden,et al. Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution , 1988 .
[56] M. Del Pozo,et al. A selective spectrofluorimetric method for carbendazim determination in oranges involving inclusion-complex formation with cucurbit[7]uril. , 2010, Talanta.
[57] P. Toogood. Inhibition of protein-protein association by small molecules: approaches and progress. , 2002, Journal of medicinal chemistry.
[58] Lyle Isaacs,et al. The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.
[59] Sarit S. Agasti,et al. Recognition-Mediated Activation of Therapeutic Gold Nanoparticles Inside Living Cells , 2010, Nature chemistry.
[60] Eunsung Lee,et al. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .
[61] T. Schrader,et al. Sequence‐Selective Peptide Recognition with Designed Modules , 2006 .
[62] G. Klebe,et al. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. , 2002, Angewandte Chemie.
[63] Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .
[64] W. Nau,et al. Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. , 2008, Chemistry.
[65] Dudley H. Williams,et al. Ligandeninduzierte Bewegungseinschränkung mit Stärkung nichtkovalenter Wechselwirkungen in Rezeptoren und Enzymen: Quelle für Bindungsenergie und katalytische Wirkung , 2004 .
[66] M. Bowers,et al. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin. , 2009, The journal of physical chemistry. A.
[67] Jae Wook Lee,et al. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.
[68] A. Hamilton,et al. Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. , 2010, Current opinion in chemical biology.
[69] Pedro Montes-Navajas,et al. Cucurbituril complexes cross the cell membrane , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
[70] R. Mutihac,et al. Complexation behavior of cucurbit[6]uril with short polypeptides , 2005 .
[71] G. Klebe,et al. Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren , 2002 .
[72] H. Pal,et al. Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket: interplay between cucurbit[7]uril and albumin. , 2008, Chemical communications.
[73] Yunqian Zhang,et al. Crystal structures of four host–guest inclusion complexes of α,α′,δ,δ′-tetramethylcucurbit[6]uril and cucurbit[8]uril with some l-amino acids , 2009 .
[74] N. Wheate. Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. , 2008, Journal of inorganic biochemistry.
[75] A. Kaifer,et al. A new cucurbit[8]uril-based fluorescent receptor for indole derivatives. , 2007, Chemical communications.
[76] Jason E Gestwicki,et al. Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.
[77] H. Schneider. Bindungsmechanismen in supramolekularen Komplexen , 2009 .
[78] Adam R. Urbach,et al. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. , 2005, Journal of the American Chemical Society.
[79] A. Hamilton,et al. Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.
[80] R. Behrend,et al. I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .
[81] Eric V. Anslyn,et al. Indicator-displacement assays , 2006 .
[82] S. Choi. Synthetic Multivalent Molecules: Concepts and Biomedical Applications , 2004 .
[83] Adam R. Urbach,et al. Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host. , 2006, Journal of the American Chemical Society.
[84] Gisbert Schneider,et al. Protein-ligand interactions from molecular recognition to drug design , 2003 .
[85] G. M. Whitesides,et al. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .
[86] H. Pal,et al. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. , 2007, Angewandte Chemie.
[87] Shonagh Walker,et al. Synthesis, processing and solid state excipient interactions of cucurbit[6]uril and its formulation into tablets for oral drug delivery. , 2010, Molecular pharmaceutics.
[88] W. Nau,et al. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes , 2007, Nature Methods.
[89] L. Isaacs,et al. Molecular-recognition properties of a water-soluble cucurbit[6]uril analogue. , 2006, The Journal of organic chemistry.
[90] Oren A Scherman,et al. Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. , 2010, Chemistry.
[91] A. Velders,et al. Supramolecular au nanoparticle assemblies as optical probes for enzyme-linked immunoassays. , 2011, Small.
[92] Adam R. Urbach,et al. Scope of amino acid recognition by cucurbit[8]uril , 2008 .
[93] M. Fujita,et al. Sequence-selective recognition of peptides within the single binding pocket of a self-assembled coordination cage. , 2005, Journal of the American Chemical Society.
[94] A. Hamilton,et al. Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.
[95] Kimoon Kim,et al. Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair. , 2007, Journal of the American Chemical Society.
[96] W. L. Mock,et al. Organic ligand-receptor interactions between cucurbituril and alkylammonium ions , 1988 .
[97] J. McDevitt,et al. Differential receptors create patterns that distinguish various proteins. , 2005, Angewandte Chemie.
[98] C. Schmuck,et al. Dipeptide binding in water by a de novo designed guanidiniocarbonylpyrrole receptor. , 2004, Journal of the American Chemical Society.