Taxon Selection under Split Diversity.

The "phylogenetic diversity" (PD) measure of biodiversity is evaluated using a phylogenetic tree, usually inferred from morphological or molecular data. Consequently, it is vulnerable to errors in that tree, including those resulting from sampling error, model misspecification, or conflicting signals. To improve the robustness of PD, we can evaluate the measure using either a collection (or distribution) of trees or a phylogenetic network. Recently, it has been shown that these 2 approaches are equivalent but that the problem of maximizing PD in the general concept is NP-hard. In this study, we provide an efficient dynamic programming algorithm for maximizing PD when splits in the trees or network form a circular split system. We illustrate our method using a case study of game birds ("Galliformes") and discuss the different choices of taxa based on our approach and PD.

[1]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[2]  Christoph Flamm,et al.  The expansion of the metazoan microRNA repertoire , 2006, BMC Genomics.

[3]  M. Nei Molecular Evolutionary Genetics , 1987 .

[4]  Paul H. Williams,et al.  What to protect?—Systematics and the agony of choice , 1991 .

[5]  Nick Goldman,et al.  Resource-aware taxon selection for maximizing phylogenetic diversity. , 2007, Systematic biology.

[6]  Dan Gusfield,et al.  Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination , 2004, J. Bioinform. Comput. Biol..

[7]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[8]  S. Marsden,et al.  Accumulation of Knowledge and Changes in Red List Classifications within the Family Galliformes1980–2004 , 2006, Biodiversity & Conservation.

[9]  Ross H. Crozier,et al.  Genetic diversity and the agony of choice , 1992 .

[10]  Faisal Ababneh,et al.  Phylogenetic model evaluation. , 2008, Methods in molecular biology.

[11]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[12]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[13]  Andrew F. Brown,et al.  Biodiversity: An Introduction , 1999, Biodiversity & Conservation.

[14]  Richard Grenyer,et al.  Preserving the evolutionary potential of floras in biodiversity hotspots , 2007, Nature.

[15]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[16]  Arndt von Haeseler,et al.  pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies , 2005, Bioinform..

[17]  Vladimir Makarenkov,et al.  Reconstruction of biogeographic and evolutionary networks using reticulograms. , 2002, Systematic biology.

[18]  Mike Steel,et al.  Phylogenetic diversity and the greedy algorithm. , 2005, Systematic biology.

[19]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[20]  G. Dyke,et al.  Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters , 2003 .

[21]  Bui Quang Minh,et al.  Phylogenetic diversity within seconds. , 2006, Systematic biology.

[22]  B. Kilian,et al.  Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. , 2007, Molecular biology and evolution.

[23]  M. Weitzman The Noah's Ark Problem , 1998 .

[24]  B. de Las Rivas,et al.  Allelic Diversity and Population Structure in Oenococcus oeni as Determined from Sequence Analysis of Housekeeping Genes , 2004, Applied and Environmental Microbiology.

[25]  Daniel H. Huson,et al.  Constructing splits graphs , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[26]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[27]  Mike Steel,et al.  Maximizing phylogenetic diversity in biodiversity conservation: Greedy solutions to the Noah's Ark problem. , 2006, Systematic biology.

[28]  Robert M. May,et al.  Taxonomy as destiny , 1990, Nature.

[29]  Daniel H. Huson,et al.  Whole-genome prokaryotic phylogeny , 2005, Bioinform..

[30]  D. Mindell Fundamentals of molecular evolution , 1991 .

[31]  Edward L. Braun,et al.  A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits , 2008 .

[32]  Nick Goldman,et al.  Species Choice for Comparative Genomics: Being Greedy Works , 2005, PLoS genetics.

[33]  R. Crozier,et al.  Towards complete biodiversity assessment: an evaluation of the subterranean bacterial communities in the Oklo region of the sole surviving natural nuclear reactor , 1999 .

[34]  Charles Semple,et al.  Optimizing phylogenetic diversity under constraints. , 2007, Journal of theoretical biology.

[35]  A. Dress,et al.  A canonical decomposition theory for metrics on a finite set , 1992 .

[36]  R. Crozier,et al.  Genetic distances and the setting of conservation priorities , 1994 .

[37]  Luay Nakhleh,et al.  Phylogenetic networks , 2004 .

[38]  V. Moulton,et al.  Computing Phylogenetic Diversity for Split Systems , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[39]  Olivier Gascuel,et al.  Mathematics of Evolution and Phylogeny , 2005 .

[40]  Gaston H. Gonnet,et al.  Using traveling salesman problem algorithms for evolutionary tree construction , 2000, Bioinform..

[41]  M. Steel,et al.  Phylogenetic diversity: from combinatorics to ecology , 2007 .

[42]  Olivier Gascuel,et al.  Reconstructing evolution : new mathematical and computational advances , 2007 .