Exponential localization of Steklov eigenfunctions on warped product manifolds: the flea on the elephant phenomenon
暂无分享,去创建一个
[1] G. Gendron. Stability estimates for an inverse Steklov problem in a class of hollow spheres , 2020, Asymptotic Analysis.
[2] Ahmad El Soufi,et al. Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.
[3] Gunther Uhlmann,et al. Inverse problems: seeing the unseen , 2014 .
[4] P. Hislop,et al. Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .
[5] Barry Simon,et al. A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.
[6] I. Holopainen. Riemannian Geometry , 1927, Nature.
[7] Yurii Lyubarskii,et al. Lectures on entire functions , 1996 .
[8] Barry Simon,et al. A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.
[9] B. Simon. Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant , 1985 .
[10] B. Helffer,et al. Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation , 1985 .
[11] J. Pöschel,et al. Inverse spectral theory , 1986 .
[12] F. Martinelli,et al. New approach to the semiclassical limit of quantum mechanics , 1981 .
[13] David A. Sher,et al. Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[14] Barry Simon,et al. A new approach to inverse spectral theory , 2016 .
[15] Ralph P. Boas,et al. OF ENTIRE FUNCTIONS , 2016 .
[16] H. Donnelly. Bounds for Eigenfunctions of the Laplacian on Compact Riemannian Manifolds , 2001 .
[17] N. Kamran,et al. Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets , 2015, Annales de l'Institut Fourier.
[18] Iosif Polterovich,et al. Spectral geometry of the Steklov problem (Survey article) , 2017 .
[19] J. Galkowski,et al. Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.
[20] B. Helffer,et al. Semi‐classical edge states for the Robin Laplacian , 2021, Mathematika.
[21] Enrique Zuazua,et al. A Two-Dimensional "Flea on the Elephant" Phenomenon and its Numerical Visualization , 2019, Multiscale Model. Simul..
[22] Thierry Aubin,et al. A course in differential geometry , 2000 .