Exponential localization of Steklov eigenfunctions on warped product manifolds: the flea on the elephant phenomenon

This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds (M, g) whose boundary ∂M consists in two distinct connected components Γ0 and Γ1. First, we show that the Steklov eigenvalues can be divided into two families (λ m )m≥0 which satisfy accurate asymptotics as m → ∞. Second, we consider the associated Steklov eigenfunctions which are the harmonic extensions of the boundary Dirichlet to Neumann eigenfunctions. In the case of symmetric warped product, we prove that the Steklov eigenfunctions are exponentially localized on the whole boundary ∂M as m → ∞. Whenever we add an asymmetric perturbation to a symmetric warped product, we observe a flea on the elephant effect. Roughly speaking, we prove that "half" the Steklov eigenfunctions are exponentially localized on one connected component of the boundary, say Γ0, and the other half on the other connected component Γ1 as m → ∞.

[1]  G. Gendron Stability estimates for an inverse Steklov problem in a class of hollow spheres , 2020, Asymptotic Analysis.

[2]  Ahmad El Soufi,et al.  Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.

[3]  Gunther Uhlmann,et al.  Inverse problems: seeing the unseen , 2014 .

[4]  P. Hislop,et al.  Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .

[5]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[6]  I. Holopainen Riemannian Geometry , 1927, Nature.

[7]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[8]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[9]  B. Simon Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant , 1985 .

[10]  B. Helffer,et al.  Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation , 1985 .

[11]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[12]  F. Martinelli,et al.  New approach to the semiclassical limit of quantum mechanics , 1981 .

[13]  David A. Sher,et al.  Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[14]  Barry Simon,et al.  A new approach to inverse spectral theory , 2016 .

[15]  Ralph P. Boas,et al.  OF ENTIRE FUNCTIONS , 2016 .

[16]  H. Donnelly Bounds for Eigenfunctions of the Laplacian on Compact Riemannian Manifolds , 2001 .

[17]  N. Kamran,et al.  Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets , 2015, Annales de l'Institut Fourier.

[18]  Iosif Polterovich,et al.  Spectral geometry of the Steklov problem (Survey article) , 2017 .

[19]  J. Galkowski,et al.  Pointwise Bounds for Steklov Eigenfunctions , 2016, The Journal of Geometric Analysis.

[20]  B. Helffer,et al.  Semi‐classical edge states for the Robin Laplacian , 2021, Mathematika.

[21]  Enrique Zuazua,et al.  A Two-Dimensional "Flea on the Elephant" Phenomenon and its Numerical Visualization , 2019, Multiscale Model. Simul..

[22]  Thierry Aubin,et al.  A course in differential geometry , 2000 .