Mechanically Proving Termination Using Polynomial Interpretations
暂无分享,去创建一个
Claude Marché | Evelyne Contejean | Xavier Urbain | Ana Paula Tomás | C. Marché | X. Urbain | Évelyne Contejean
[1] Salvador Lucas. Termination of (Canonical) Context-Sensitive Rewriting , 2002, RTA.
[2] Joxan Jaffar,et al. Constraint logic programming , 1987, POPL '87.
[3] Nicholas Pippenger,et al. On the Evaluation of Powers and Monomials , 1980, SIAM J. Comput..
[4] Yuri Matiyasevich,et al. Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.
[5] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[6] Nachum Dershowitz,et al. Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[7] Jürgen Giesl,et al. Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..
[8] Arnold Schönhage,et al. A Lower Bound for the Length of Addition Chains , 1975, Theor. Comput. Sci..
[9] Nao Hirokawa,et al. Tsukuba Termination Tool , 2003, RTA.
[10] Nao Hirokawa,et al. Approximating Dependency Graphs without using Tree Automata Techniques , 2003 .
[11] Cliff B. Jones,et al. An Early Program Proof by Alan Turing , 1984, Annals of the History of Computing.
[12] Eric Deplagne. Sequent Calculus Viewed Modulo , 2000 .
[13] Salvador Lucas,et al. mu-term: A Tool for Proving Termination of Context-Sensitive Rewriting , 2004, RTA.
[14] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[15] Richard J. Lipton,et al. Addition Chain Methods for the Evaluation of Specific Polynomials , 1980, SIAM J. Comput..
[16] François Monin,et al. Principles and Practice of Declarative Programming , 1999, Lecture Notes in Computer Science.
[17] Hélène Touzet,et al. An Ordinal Calculus for Proving Termination in Term Rewriting , 1996, CAAP.
[18] Nachum Dershowitz. Orderings for Term-Rewriting Systems , 1979, FOCS.
[19] Jocelyne Rouyer. Preuves de terminaison de systèmes de réécriture fondées sur les interprétations polynomiales. Une méthode basée sur le théorème de Sturm , 1991 .
[20] Jan Willem Klop,et al. Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.
[21] Peter de Rooij,et al. Efficient Exponentiation using Procomputation and Vector Addition Chains , 1994, EUROCRYPT.
[22] Pierre Lescanne,et al. Termination of rewrite systems by elementary interpretations , 1992, Formal Aspects of Computing.
[23] Aart Middeldorp,et al. Approximating Dependency Graphs Using Tree Automata Techniques , 2001, IJCAR.
[24] Salvador Lucas,et al. Simple termination of context-sensitive rewriting , 2002, RULE '02.
[25] Claude Marché,et al. Proving Termination of Rewriting with C i ME , 2003 .
[26] Cliff B. Jones,et al. An Early Program Proof by , 1984 .
[27] Guillaume Bonfante,et al. Algorithms with polynomial interpretation termination proof , 2001, Journal of Functional Programming.
[28] Salvador Lucas. mu-term : a tool for proving termination of rewriting with replacement restrictions ? , 2004 .
[29] Yoshihito Toyama,et al. Argument Filtering Transformation , 1999, PPDP.
[30] Ju. V. Matijasevic,et al. ENUMERABLE SETS ARE DIOPHANTINE , 2003 .
[31] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[32] Dieter Hofbauer,et al. Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.
[33] Joachim Steinbach. Proving Polynomials Positive , 1992, FSTTCS.
[34] Matthijs J. Coster,et al. Addition Chain Heuristics , 1989, CRYPTO.
[35] Srecko Brlek,et al. Addition Chains Using Continued Fractions , 1989, J. Algorithms.
[36] Philippe Codognet,et al. Compiling Constraints in clp(FD) , 1996, J. Log. Program..
[37] Hélène Kirchner,et al. System Presentation -- CARIBOO: An induction based proof tool for termination with strategies , 2002, PPDP '02.
[38] Hans Zantema. Minimizing Sums of Addition Chains , 1991, J. Algorithms.
[39] Nachum Dershowitz,et al. Trees, Ordinals and Termination , 1993, TAPSOFT.
[40] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[41] Jörg Sauerbrey,et al. Resource Requirements for the Application of Addition Chains in Modulo Exponentiation , 1992, EUROCRYPT.
[42] Pierre Lescanne,et al. Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation , 1987, Sci. Comput. Program..
[43] S. Falke,et al. AProVE : A System for Proving Termination , 2003 .
[44] Bruno Courcelle,et al. Recursive Applicative Program Schemes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[45] Peter J. Downey,et al. Computing Sequences with Addition Chains , 1981, SIAM J. Comput..
[46] Enno Ohlebusch,et al. Modular Termination Proofs for Rewriting Using Dependency Pairs , 2002, J. Symb. Comput..
[47] A. M. Turing,et al. Checking a large routine , 1989 .
[48] Pierre Lescanne. Termination of Rewrite Systems by Elementary Interpretations , 1992, ALP.
[49] J. Urgen Giesl. Generating Polynomial Orderings for Termination Proofs ? , 1995 .
[50] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[51] Mahesh Viswanathan,et al. Testing Extended Regular Language Membership Incrementally by Rewriting , 2003, RTA.
[52] Hoon Hong,et al. Testing Positiveness of Polynomials , 1998, Journal of Automated Reasoning.
[53] Jorge Olivos. On Vectorial Addition Chains , 1981, J. Algorithms.
[54] J. Berstel,et al. Efficient computation of addition chains , 1994, Journal de Théorie des Nombres de Bordeaux.