A Numerical Framework for Sobolev Metrics on the Space of Curves

Statistical shape analysis can be done in a Riemannian framework by endowing the set of shapes with a Riemannian metric. Sobolev metrics of order two and higher on shape spaces of parametrized or unparametrized curves have several desirable properties not present in lower order metrics, but their discretization is still largely missing. In this paper, we present algorithms to numerically solve the geodesic initial and boundary value problems for these metrics. The combination of these algorithms enables one to compute Karcher means in a Riemannian gradient-based optimization scheme and perform principal component analysis and clustering. Our framework is sufficiently general to be applicable to a wide class of metrics. We demonstrate the effectiveness of our approach by analyzing a collection of shapes representing HeLa cell nuclei.

[1]  Anuj Srivastava,et al.  Landmark-free statistical analysis of the shape of plant leaves. , 2014, Journal of Theoretical Biology.

[2]  Anuj Srivastava,et al.  Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.

[3]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[4]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[5]  S. Kurtek,et al.  Second order elastic metrics on the shape space of curves , 2015, 1507.08816.

[6]  B A Ardekani,et al.  Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database , 2015, Journal of autism and developmental disorders.

[7]  Robert F Murphy,et al.  Deformation‐based nuclear morphometry: Capturing nuclear shape variation in HeLa cells , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[8]  M. Bruveris,et al.  Completeness properties of Sobolev metrics on the space of curves , 2014, 1407.0601.

[9]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[10]  Jan Vybíral Function spaces with dominating mixed smoothness , 2006 .

[11]  Martin Bauer,et al.  Sobolev metrics on shape space of surfaces , 2010, 1211.3515.

[12]  Martin Bauer,et al.  Overview of the Geometries of Shape Spaces and Diffeomorphism Groups , 2013, Journal of Mathematical Imaging and Vision.

[13]  Sudeep Sarkar,et al.  Rate-Invariant Analysis of Trajectories on Riemannian Manifolds with Application in Visual Speech Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  D. Mumford,et al.  GEODESIC COMPLETENESS FOR SOBOLEV METRICS ON THE SPACE OF IMMERSED PLANE CURVES , 2013, Forum of Mathematics, Sigma.

[15]  Martin Bauer,et al.  A New Riemannian Setting for Surface Registration , 2011, 1106.0620.

[16]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[17]  Peter W. Michor,et al.  The action of the diffeomorphism group on the space of immersions , 1991 .

[18]  Stefano Soatto,et al.  A New Geometric Metric in the Space of Curves, and Applications to Tracking Deforming Objects by Prediction and Filtering , 2011, SIAM J. Imaging Sci..

[19]  Hamid Krim,et al.  Statistics and Analysis of Shapes (Modeling and Simulation in Science, Engineering and Technology) , 2005 .

[20]  Markus Eslitzbichler,et al.  Modelling character motions on infinite-dimensional manifolds , 2014, The Visual Computer.

[21]  Martin Bauer,et al.  Constructing reparametrization invariant metrics on spaces of plane curves , 2012, 1207.5965.

[22]  Anuj Srivastava,et al.  Analysis of AneuRisk65 data: Elastic shape registration of curves , 2014 .

[23]  Martin Bauer,et al.  Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation , 2011 .

[24]  The Homotopy Type of the Space of Degree 0 — Immersed Plane Curves , 2005, math/0509694.

[25]  D. Mumford,et al.  A Metric on Shape Space with Explicit Geodesics , 2007, 0706.4299.

[26]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[27]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[28]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[29]  Anuj Srivastava,et al.  Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  H. Schmeißer Recent developments in the theory of function spaces with dominating mixed smoothness , 2007 .

[31]  Martin Bauer,et al.  $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves , 2013, 1311.3526.

[32]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[33]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[34]  Martin Bauer,et al.  Curve Matching with Applications in Medical Imaging , 2015, 1506.08840.

[35]  Helmut Brass,et al.  Quadrature Theory: The Theory of Numerical Integration on a Compact Interval , 2011 .

[36]  Laurent Younes,et al.  Spaces and manifolds of shapes in computer vision: An overview , 2012, Image Vis. Comput..

[37]  François-Xavier Vialard,et al.  Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics , 2014, SIAM J. Imaging Sci..

[38]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[39]  Martin Bauer,et al.  Landmark-Guided Elastic Shape Analysis of Human Character Motions , 2015, ArXiv.

[40]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Winfried Sickel,et al.  Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.

[43]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[44]  D. Mumford,et al.  An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach , 2006, math/0605009.

[45]  Anthony J. Yezzi,et al.  Coarse-to-Fine Segmentation and Tracking Using Sobolev Active Contours , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.