MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures

We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical composition to be estimated. Here, I/F is defined as the ratio of the radiance measured by CRISM to the solar irradiance at Mars divided by $\pi$. After discussing the capabilities and limitations of the pipeline software system, we demonstrate its application on several multispectral data cubes: the outer northern ice cap of Mars, Tyrrhena Terra, and near the landing site for the Phoenix mission. For the icy spectra near the northern polar cap, aerosols need to be included in order to properly correct for the CO_2 absorption in the H_{2}O ice bands at wavelengths near 2.0 $\mu$m. In future phases of software development, we intend to use CRISM data directly in order to retrieve the spatiotemporal maps of aerosol optical depths, surface pressure and surface temperature.

[1]  J. A. Grant,et al.  Downselection of Landing Sites for the Mars Science Laboratory , 2008 .

[2]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[3]  E. Malaret,et al.  Construction of the CRISM Global Multispectral Map of Mars , 2008 .

[4]  R. Morris,et al.  Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites , 2008 .

[5]  C. Sotin,et al.  Surface-Atmospheric Separation Models for Titan: Plane Parallel vs. Spherical Shell Radiative Transfer Solutions for Cassini VIMS Data , 2007 .

[6]  G. Rossman,et al.  Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements , 2007 .

[7]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[8]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method , 2007 .

[9]  Jean-Pierre Bibring,et al.  Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps , 2007 .

[10]  Marcos J. Montes,et al.  An Atmospheric Correction Algorithm for Remote Sensing of Bright Coastal Waters Using MODIS Land and Ocean Channels in the Solar Spectral Region , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Sylvain Douté,et al.  WAVANGLET: An Efficient Supervised Classifier for Hyperspectral Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  J. Bandfield High-resolution subsurface water-ice distributions on Mars , 2006, Nature.

[13]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[14]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[15]  Thomas H. Painter,et al.  Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow , 2006 .

[16]  Peter R. J. North,et al.  Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Fred J. Tanis,et al.  Multispectral bathymetry using a simple physically based algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Michael D. King,et al.  Sua pan surface bidirectional reflectance: a case study to evaluate the effect of atmospheric correction on the surface products of the multi-angle imaging SpectroRadiometer (MISR) during SAFARI 2000 , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Alan H. Strahler,et al.  Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  S. Murchie,et al.  Retrieval of Surface Lambert Albedos from the Mars Reconnaissance Orbiter CRISM Data , 2006 .

[21]  E. Clothiaux,et al.  Fundamentals of Atmospheric Radiation , 2006 .

[22]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[23]  G. Piccioni,et al.  Water clouds and dust aerosols observations with PFS MEX at Mars , 2005 .

[24]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[25]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[26]  S. Lewis,et al.  The atmospheric circulation and dust activity in different orbital epochs on Mars , 2005 .

[27]  Patrick L. Thompson,et al.  CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter) , 2004, SPIE Asia-Pacific Remote Sensing.

[28]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[29]  T. Martin Thermal correction of MRO CRISM data using photoclinometry and slope-dependent thermal models for the Martian surface , 2004 .

[30]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[31]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[32]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[33]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[34]  Peter H. Smith,et al.  The Phoenix Scout Mission , 2003 .

[35]  H. Kieffer,et al.  IR spectral properties of dust and ice at the Mars south polar cap , 2001 .

[36]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[37]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[38]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean: Contents , 1999 .

[39]  Bernard Schmitt,et al.  The temperature‐dependent near‐infrared absorption spectrum of hexagonal H2O ice , 1998 .

[40]  Thomas H. Painter,et al.  The Effect of Grain Size on Spectral Mixture Analysis of Snow-Covered Area from AVIRIS Data , 1998 .

[41]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[42]  Peter Guttorp,et al.  The Martian annual atmospheric pressure cycle: Years without great dust storms , 1993 .

[43]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[44]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[45]  T. Roush,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[46]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[47]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[48]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[49]  M. Wolff,et al.  Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession , 2008 .

[50]  S. Murchie,et al.  MRO CRISM SYSTEMATIC INVESTIGATION OF THE MSL CANDIDATE LANDING SITES , 2008 .

[51]  R. Clancy,et al.  CRISM OBSERVATIONS OF WATER VAPOR AND OTHER ATMOSPHERIC GASES , 2007 .

[52]  J. Mustard,et al.  Observation of 3 m Hydration Feature on Mars from OMEGA-MEx Data , 2006 .

[53]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[54]  A. Brown > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < Spectral Curve Fitting for Automatic Hyperspectral Data Analysis , 2022 .