Ocular Preparations: The Formulation Approach

ABSTRACT The main aim of pharmacotherapeutics is the attainment of an effective drug concentration at the intended site of action for a sufficient period of time to elicit the response. A major problem being faced in ocular therapeutics is the attainment of an optimal concentration at the site of action. Poor bioavailability of drugs from ocular dosage forms is mainly due to the tear production, non-productive absorption, transient residence time, and impermeability of corneal epithelium. This article reviews: the barriers that decrease the bioavailability of an ophthalmic drug; the objectives to be considered in producing optimal formulations; and the approaches being used to improve the corneal penetration of a drug molecule and delay its elimination from the eye. The focus of this review is on the recent developments in topical ocular drug delivery systems, the rationale for their use, their drug release mechanism, and the characteristic advantages and limitations of each system. In addition, the review attempts to give various analytical procedures including the animal models and other models required for bioavailability and pharmacokinetic studies. The latter can aid in the design and predictive evaluation of newer delivery systems. The dosage forms are divided into the ones which affect the precorneal parameters, and those that provide a controlled and continuous delivery to the pre- and intraocular tissues. The systems discussed include: (a) the commonly used dosage forms such as gels, viscosity imparting agents, ointments, and aqueous suspensions; (b) the newer concept of penetration enhancers, phase transition systems, use of cyclodextrins to increase solubility of various drugs, vesicular systems, and chemical delivery systems such as the prodrugs; (c) the developed and under-development controlled/continuous drug delivery systems including ocular inserts, collagen shields, ocular films, disposable contact lenses, and other new ophthalmic drug delivery systems; and (d) the newer trends directed towards a combination of drug delivery technologies for improving the therapeutic response of a non-efficacious drug. The fruitful resolution of the above-mentioned technological suggestions can result in a superior dosage form for both topical and intraocular ophthalmic application.

[1]  G. Mazzanti,et al.  Evaluation of ocular permeation enhancers: In vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity , 1996 .

[2]  I. Kellaway,et al.  Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic drug delivery system , 1992 .

[3]  J. Andersen,et al.  Comparison of Azone and Hexamethylene Lauramide in Toxicologic Effects and Penetration Enhancement of Cimetidine in Rabbit Eyes , 1992, Pharmaceutical Research.

[4]  J. Carlfors,et al.  Rheological evaluation and ocular contact time of some carbomer gels for ophthalmic use , 1996 .

[5]  H. Kaufman,et al.  Clinical uses of collagen shields , 1988, Journal of cataract and refractive surgery.

[6]  A. Urtti,et al.  Bispilocarpic acid monoesters as prodrugs of pilocarpine: I. Preparation and identification , 1992 .

[7]  S. Davis,et al.  In vitro evaluation of the mucoadhesive properties of chitosan microspheres , 1998 .

[8]  S. Iwata,et al.  Corneal permeability to bunazosin in rabbits. , 1988, Journal of pharmacobio-dynamics.

[9]  J. Carlfors,et al.  Rheological evaluation of Gelrite in situ gels for ophthalmic use. , 1998, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[10]  F. Merkus,et al.  Absorption enhancers in nasal drug delivery: efficacy and safety , 1993 .

[11]  V. H. Lee Mechanisms and facilitation of corneal drug penetration , 1990 .

[12]  J. Campagna,et al.  Pilocarpine spray: an alternative delivery method. , 1998, Journal of Ocular Pharmacology and Therapeutics.

[13]  M. Eller,et al.  Topical carbonic anhydrase inhibitors IV: Relationship between excised corneal permeability and pharmacokinetic factors. , 1985, Journal of pharmaceutical sciences.

[14]  G. Peyman,et al.  A preliminary study of corneal penetration of 125l‐labelled idoxuridine liposome , 1986, Acta ophthalmologica.

[15]  M. Wilson,et al.  Detergent penetration into young and adult rabbit eyes: comparative pharmacokinetics , 1987 .

[16]  M. Saettone,et al.  Influence of drug concentration on in vitro release of salicylic acid from ointment bases. , 1974, Journal of pharmaceutical sciences.

[17]  P. Kaufman,et al.  Obstruction of aqueous humor outflow by cross-linked polyacrylamide microgels in bovine, monkey, and human eyes. , 1994, Ophthalmology.

[18]  M. Norn EYELID OINTMENT PENETRATING INTO CONJUNCTIVAL SAC , 1972, Acta ophthalmologica.

[19]  J. Hadgraft,et al.  Evaluation of Mucoadhesive Polymers in Ocular Drug Delivery. II. Polymer-Coated Vesicles , 1992, Pharmaceutical Research.

[20]  J. Gottsch,et al.  Use of collagen corneal shields in the treatment of bacterial keratitis. , 1988, American journal of ophthalmology.

[21]  H. Miichi,et al.  Assessment of ocular irritability of liposome preparations. , 1988, Journal of pharmacobio-dynamics.

[22]  G. Wilcox,et al.  The release of insoluble antibiotics from collagen ocular inserts in vitro and their insertion into the conjunctival sac of cattle. , 1987, Journal of veterinary pharmacology and therapeutics.

[23]  S. Chrai,et al.  Competitive inhibition of drug-protein interaction in eye fluids and tissues. , 1973, Journal of pharmaceutical sciences.

[24]  R. W. Wood,et al.  Ocular drug delivery of progesterone using nanoparticles. , 1986, Journal of microencapsulation.

[25]  S. Dumitriu,et al.  Polycomponent Ophthalmic Inserts with Polysaccharide Support , 1988 .

[26]  Tomi Järvinen,et al.  Ocular Absorption and Irritation of Pilocarpine Prodrug Is Modified with Buffer, Polymer, and Cyclodextrin in the Eyedrop , 1995, Pharmaceutical Research.

[27]  R. Gurny,et al.  Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. , 1996, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[28]  J. Kelly,et al.  Relative bioavailability of pilocarpine from a novel ophthalmic delivery system and conventional eyedrop formulations. , 1989, The British journal of ophthalmology.

[29]  A. Urtti,et al.  Pilocarpine release from hydroxypropyl-cellulose-polyvinylpyrrolidone matrices , 1985 .

[30]  V. H. Lee,et al.  Formulation Influence on Conjunctival Penetration of Four Beta Blockers in the Pigmented Rabbit: A Comparison with Corneal Penetration , 1991, Pharmaceutical Research.

[31]  G. Smolin,et al.  Idoxuridine-liposome therapy for herpes simplex keratitis. , 1981, American journal of ophthalmology.

[32]  M. Duffel,et al.  Ocular disposition of aminozolamide in the rabbit eye. , 1987, Investigative ophthalmology & visual science.

[33]  Jennifer I. Lim,et al.  Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. , 1995, Investigative ophthalmology & visual science.

[34]  Sasaki Hitoshi,et al.  Drug release from an ophthalmic insert of a beta-blocker as an ocular drug delivery system , 1993 .

[35]  E. Stefánsson,et al.  2-hydroxypropyl-β-cyclodextrin in topical carbonic anhydrase inhibitor formulations , 1994 .

[36]  A. Rozier,et al.  Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol , 1989 .

[37]  Clive G. Wilson,et al.  A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles , 1987 .

[38]  Thomas J. Smith,et al.  Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis. Use of an intravitreal device. , 1992, Archives of ophthalmology.

[39]  J. Prause,et al.  A bioavailability comparison in rabbits after a single topical ocular application of prednisolone acetate formulated as a high-viscosity gel and as an aqueous suspension. , 2009, Acta ophthalmologica Scandinavica.

[40]  H. Sasaki,et al.  Ophthalmic Preservatives as Absorption Promoters for Ocular Drug Delivery , 1995, The Journal of pharmacy and pharmacology.

[41]  P. Artursson,et al.  Mechanisms of absorption enhancement and tight junction regulation , 1994 .

[42]  R. Ritch,et al.  Systemic pilocarpine toxicity from Ocusert leakage. , 1996, Archives of ophthalmology.

[43]  S. Citi Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells , 1992, The Journal of cell biology.

[44]  D. Tang-Liu,et al.  Effects of four penetration enhancers on corneal permeability of drugs in vitro. , 1994, Journal of pharmaceutical sciences.

[45]  S. Iwata,et al.  In vitro study on corneal permeability to bunazosin. , 1988, Journal of pharmacobio-dynamics.

[46]  Claus-Michael Lehr,et al.  In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers , 1992 .

[47]  G. Chiou,et al.  Improvement of systemic absorption of insulin through eyes with absorption enhancers. , 1989, Journal of pharmaceutical sciences.

[48]  C. Crosson,et al.  Beta-cyclodextrins enhance bioavailability of pilocarpine. , 1993, Current eye research.

[49]  P. Edman Biopharmaceutics of Ocular Drug Delivery , 1992 .

[50]  D. Meisner,et al.  Liposome ocular delivery systems , 1995 .

[51]  Robert Gurny,et al.  PATENT LITERATURE REVIEW OF OPHTHALMIC INSERTS , 1995 .

[52]  T. Maren,et al.  Ocular pharmacology of methazolamide analogs: distribution in the eye and effects on pressure after topical application. , 1987, The Journal of pharmacology and experimental therapeutics.

[53]  P. Deasy,et al.  Rheological evaluation of deacetylated gellan gum (Gelrite) for pharmaceutical use , 1991 .

[54]  P. K. Sehgal,et al.  Collagen ophthalmic inserts for pilocarpine drug delivery system , 1988 .

[55]  A. Ludwig,et al.  The influence of penetration enhancers on the volume instilled of eye drops. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[56]  M. Prausnitz,et al.  Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. , 1998, Journal of pharmaceutical sciences.

[57]  Joseph R. Robinson,et al.  Mechanisms of action of some penetration enhancers in the cornea: Laser scanning confocal microscopic and electrophysiology studies , 1990 .

[58]  A. Urtti,et al.  Improved ocular: systemic absorption ratio of timolol by viscous vehicle and phenylephrine. , 1990, Investigative ophthalmology & visual science.

[59]  B. Gebhardt,et al.  Collagen as a delivery system for hydrophobic drugs: studies with cyclosporine. , 1995, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[60]  K. Higaki,et al.  Estimation and enhancement of in vitro corneal transport of S-1033, a novel antiglaucoma medication , 1996 .

[61]  U. Pleyer,et al.  Ocular absorption of cyclosporine A from liposomes incorporated into collagen shields. , 1994, Current eye research.

[62]  A. Gudgeon,et al.  A comparison of the efficacy and duration of action of topically applied proxymetacaine using a novel ophthalmic delivery system versus eye drops in healthy young volunteers. , 1993, The British journal of ophthalmology.

[63]  Andreas Zimmer,et al.  Microspheres and nanoparticles used in ocular delivery systems , 1995 .

[64]  J. Greaves,et al.  Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine. , 1992, British journal of clinical pharmacology.

[65]  H. Wolburg,et al.  Impregnation of collagen corneal shields with liposomes: uptake and release of hydrophilic and lipophilic marker substances. , 1996, Current eye research.

[66]  S. Iwata,et al.  Studies on improved corneal permeability to bunazosin. , 1988, Journal of pharmacobio-dynamics.

[67]  R. Jalil Biodegradable Poly(Lactic Acid) and Poly (Lactide-Co-Glycolide) Polymers in Sustained Drug Delivery , 1990 .

[68]  P. Sado,et al.  Effect of cyclosporine A formulations on bovine corneal absorption: ex-vivo study. , 1997, Journal of microencapsulation.

[69]  J. Robinson,et al.  Ocular delivery of progesterone using a bioadhesive polymer , 1985 .

[70]  D. Maurice,et al.  The influence of non-ionic detergents and other surfactants on human corneal permeability. , 1971, Experimental eye research.

[71]  E. Falch,et al.  Pilocarpine prodrugs I. Synthesis, physicochemical properties and kinetics of lactonization of pilocarpic acid esters. , 1986, Journal of pharmaceutical sciences.

[72]  W. Hammerstein,et al.  The ophthalmic rod — a new drug-delivery system II , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[73]  N. Bodor,et al.  Soft drugs: Principles and methods for the design of safe drugs , 1984, Medicinal research reviews.

[74]  Susi Burgalassi,et al.  Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid , 1989 .

[75]  J. Robinson,et al.  Bioadhesive and phase-change polymers for ocular drug delivery , 1995 .

[76]  I. Tucker,et al.  Evaluation of Poly(isobutylcyanoacrylate) Nanoparticles for Mucoadhesive Ocular Drug Delivery. I. Effect of Formulation Variables on Physicochemical Characteristics of Nanoparticles , 1995, Pharmaceutical Research.

[77]  T. D. Duane,et al.  Duane's Clinical Ophthalmology , 1993 .

[78]  Y. Ikada,et al.  A new vitreal drug delivery system using an implantable biodegradable polymeric device. , 1994, Investigative ophthalmology & visual science.

[79]  J. Carlfors,et al.  Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. , 1998, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[80]  J. Robinson,et al.  Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. , 1985, Journal of pharmaceutical sciences.

[81]  T. Nakai,et al.  Evaluation of permeability enhancement of hydrophilic compounds and macromolecular compounds by bile salts through rabbit corneas in‐vitro , 1987, The Journal of pharmacy and pharmacology.

[82]  A. Ludwig,et al.  The evaluation of viscous ophthalmic vehicles by slit lamp fluorophotometry in humans , 1989 .

[83]  J. Robinson,et al.  The effect of polyethylene glycol molecular weight on corneal transport and the related influence of penetration enhancers , 1992 .

[84]  D. Krohn,et al.  Liposomes in topical drug delivery. , 1982, Investigative ophthalmology & visual science.

[85]  M. Prausnitz,et al.  Fiber matrix model of sclera and corneal stroma for drug delivery to the eye , 1998 .

[86]  J. Aiache,et al.  The Formulation of Drug for Ocular Administration , 1997, Journal of biomaterials applications.

[87]  J. Szejtli,et al.  Cyclodextrins in Pharmacy , 1993 .

[88]  Clive G. Wilson,et al.  Treatment of diseases of the eye with mucoadhesive delivery systems , 1993 .

[89]  R. Gurny,et al.  Biocompatibility of a new semisolid bioerodible poly(ortho ester) intended for the ocular delivery of 5-fluorouracil. , 1994, Journal of biomedical materials research.

[90]  G. Sachs,et al.  Studies on a novel series of acyl ester prodrugs of prostaglandin F2 alpha. , 1994, The British journal of ophthalmology.

[91]  B. Saville,et al.  Theoretical corneal permeation model for ionizable drugs. , 1993, Journal of ocular pharmacology.

[92]  E. Lobel,et al.  A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye , 1997 .

[93]  U. Pleyer,et al.  Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye. , 1993, Ophthalmology.

[94]  J. McLaren,et al.  Comparison of dorzolamide and acetazolamide as suppressors of aqueous humor flow in humans. , 1997, Archives of ophthalmology.

[95]  R. Juliano Drug delivery systems : characteristics and biomedical applications , 1980 .

[96]  J. Hardy,et al.  A comparison of the effect of viscosity on the precorneal residence of solutions in rabbit and man , 1986, The Journal of pharmacy and pharmacology.

[97]  P. Couvreur,et al.  Characterization of a new ocular delivery system based on a dispersion of liposomes in a thermosensitive gel , 1998 .

[98]  R. Gurny,et al.  Ocular therapy with nanoparticulate systems for controlled drug delivery , 1985 .

[99]  J. Robinson,et al.  Ocular evaluation of polyvinyl alcohol vehicle in rabbits. , 1975, Journal of pharmaceutical sciences.

[100]  A. Urtti,et al.  Controlled Ocular Timolol Delivery: Systemic Absorption and Intraocular Pressure Effects in Humans , 1994, Pharmaceutical Research.

[101]  H. Sasaki,et al.  Penetration of β‐Blockers through Ocular Membranes in A1bino Rabbits , 1995 .

[102]  L. Nielsen,et al.  Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate , 1998 .

[103]  P. Sado,et al.  Ophthalmic drug delivery systems—Recent advances , 1998, Progress in Retinal and Eye Research.

[104]  M. Diestelhorst,et al.  The ocular tolerability of a new ophthalmic drug delivery system (NODS) , 2004, International Ophthalmology.

[105]  N. Udupa,et al.  Evaluation of ciprofloxacin hydrochloride ocular preparations , 1993 .

[106]  H. Kaufman Collagen Shield Symposium , 1988, Journal of cataract and refractive surgery.

[107]  B. Müller,et al.  In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha. , 1994, Journal of pharmaceutical sciences.

[108]  M. F. Saettone,et al.  Polymer effects on ocular bioavailability: the influence of different liquid vehicles on the mydriatic response of tropicamide in humans and in rabbits , 1984 .

[109]  S. Podos,et al.  The effects of dipivalyl epinephrine on the eye. , 1976, American journal of ophthalmology.

[110]  H. Sasaki,et al.  Different Effects of Absorption Promoters on Corneal and Conjunctival Penetration of Ophthalmic Beta-Blockers , 1995, Pharmaceutical Research.

[111]  P. Speiser,et al.  Ophthalmic drug delivery : biopharmaceutical, technological and clinical aspects , 1987 .

[112]  H. Thompson,et al.  Collagen-based drug delivery and artificial tears. , 1994, Journal of ocular pharmacology.

[113]  R. Schoenwald,et al.  Improving the ocular absorption of phenylephrine. , 1986, Biopharmaceutics & drug disposition.

[114]  A. Urtti,et al.  Systemic absorption of ocular pilocarpine is modified by polymer matrices , 1985 .

[115]  B. Gebhardt,et al.  Topically applied cyclosporine in azone prolongs corneal allograft survival. , 1988, Investigative ophthalmology & visual science.

[116]  H. Sasaki,et al.  Ocular delivery of the β-blocker, tilisolol, through the prodrug approach , 1993 .

[117]  Susan C. Miller,et al.  Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits , 1982 .

[118]  M. Torracca,et al.  Controlled release of pilocarpine from coated polymeric ophthalmic inserts prepared by extrusion , 1992 .

[119]  P. Shek,et al.  Liposomes are effective carriers for the ocular delivery of prophylactics. , 1987, Biochimica et biophysica acta.

[120]  R. Gurny,et al.  Long-acting soluble bioadhesive ophthalmic drug insert (BODI) containing gentamicin for veterinary use: optimization and clinical investigation , 1995 .

[121]  L. Balant,et al.  Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[122]  V. H. Lee,et al.  Ocular drug bioavailability from topically applied liposomes. , 1985, Survey of ophthalmology.

[123]  M. Osato,et al.  The solubility of antibiotic and corticosteroid combinations. , 1992, American journal of ophthalmology.

[124]  H. Jampel,et al.  Pharmacokinetics of etoposide delivery by a bioerodible drug carrier implanted at glaucoma surgery. , 1994, Journal of ocular pharmacology.

[125]  A. Joshi Microparticulates for ophthalmic drug delivery. , 1994, Journal of ocular pharmacology.

[126]  I. Hørven Acute conjunctivitis , 1993, Acta ophthalmologica.

[127]  Kinam Park,et al.  Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion , 1984 .

[128]  P. Speiser Pharmazeutisches,et al.  Ophthalmic Drug Delivery , 1987, FIDIA Research Series.

[129]  M. F. Saettone,et al.  The effect of different ophthalmic vehicles on the activity of tropicamide in man , 1980, The Journal of pharmacy and pharmacology.

[130]  E. Stefánsson,et al.  Formulation and testing of methazolamide cyclodextrin eye drop solutions , 1997 .

[131]  H. Sasaki,et al.  Effect of Preservatives on Systemic Delivery of Insulin by Ocular Instillation in Rabbits , 1994, The Journal of pharmacy and pharmacology.

[132]  P. Perugini,et al.  Bioadhesive Microspheres for Ophthalmic Administration of Acyclovir , 1997, The Journal of pharmacy and pharmacology.

[133]  R. Gurny,et al.  In vivo evaluation of dosage forms: application of gamma scintigraphy to non-enteral routes of administration. , 1994, Journal of drug targeting.

[134]  J. Robinson,et al.  Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy , 1994 .

[135]  P. Chetoni,et al.  Albuterol prodrugs for ocular administration: synthesis and evaluation of the physico-chemical and IOP-depressant properties of three albuterol triesters , 1994 .

[136]  V. H. Lee,et al.  Timolol prodrugs: synthesis, stability and lipophilicity of various alkyl, cycloalkyl and aromatic esters of timolol , 1988 .

[137]  J D Smart,et al.  An in‐vitro investigation of mucosa‐adhesive materials for use in controlled drug delivery , 1984, The Journal of pharmacy and pharmacology.

[138]  H. Jampel,et al.  Glaucoma filtration surgery in nonhuman primates using taxol and etoposide in polyanhydride carriers. , 1993, Investigative ophthalmology & visual science.

[139]  Ophthalmic rods. New ocular drug delivery devices. , 1986, Ophthalmology.

[140]  O. El-Gazayerly,et al.  Preparation and evaluation of acetazolamide liposomes as an ocular delivery system , 1997 .

[141]  G. Smistad,et al.  Bioadhesion of hydrated chitosans: An in vitro and in vivo study , 1996 .

[142]  M. Ercan,et al.  In-vivo studies on dexamethasone sodium phosphate liposomes. , 1996, Journal of microencapsulation.

[143]  J. Lang,et al.  Drug release profiles of ophthalmic formulations. 1. Instrumentation. , 1992, Analytical chemistry.

[144]  M. F. Saettone,et al.  Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man , 1982, The Journal of pharmacy and pharmacology.

[145]  Y. Ikada,et al.  Scleral plug of biodegradable polymers for controlled drug release in the vitreous. , 1994, Archives of ophthalmology.

[146]  P. Sever,et al.  Fludrocortisone in the treatment of postural hypotension: altered sensitivity to pressor agents [proceedings]. , 1978, British journal of clinical pharmacology.

[147]  L. Romanelli,et al.  Ocular absorption and distribution of bendazac after topical administration to rabbits with different vehicles. , 1994, Life sciences.

[148]  V. H. Lee,et al.  Topical ocular drug delivery: recent developments and future challenges. , 1986, Journal of ocular pharmacology.

[149]  D. Tang-Liu,et al.  A corneal perfusion device for estimating ocular bioavailability in vitro. , 1990, Journal of Pharmacy and Science.

[150]  Sandeep Kumar,et al.  In situ-forming gels for ophthalmic drug delivery. , 1994, Journal of ocular pharmacology.

[151]  L. Salminen,et al.  Ocular inserts for topical delivery , 1995 .

[152]  M. Attia,et al.  IN VIVO PERFORMANCE OF [3H] DEXAMETHASONE OPHTHALMIC FILM DELIVERY SYSTEMS IN THE RABBIT EYE , 1988 .

[153]  T. F. Patton,et al.  Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. , 1987, Journal of pharmaceutical sciences.

[154]  Y. Ikada,et al.  Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits , 1995 .

[155]  J. Robinson,et al.  Vehicle effects on ocular drug bioavailability i: evaluation of fluorometholone. , 1975, Journal of pharmaceutical sciences.

[156]  R. Gurny,et al.  Biomaterials in ophthalmic drug delivery , 1996 .

[157]  S. Yalkowsky,et al.  Controlled Delivery of Pilocarpine. 1. In Vitro Characterization of Gelfoam® Matrices , 2004, Pharmaceutical Research.

[158]  J. Hardy,et al.  Precorneal drainage of polyvinyl alcohol solutions in the rabbit assessed by gamma scintigraphy , 1983, The Journal of pharmacy and pharmacology.

[159]  P. Maincent,et al.  Poly(ε-Caprolactone) Nanocapsules in Carteolol Ophthalmic Delivery , 1993, Pharmaceutical Research.

[160]  G. Grass,et al.  Relationship of chemical structure to corneal penetration and influence of low-viscosity solution on ocular bioavailability. , 1984, Journal of pharmaceutical sciences.

[161]  G. Grass,et al.  Mechanisms of corneal drug penetration. I: In vivo and in vitro kinetics. , 1988, Journal of pharmaceutical sciences.