Characterization of Elastic Modulus Across the (Al1–xScx)N System Using DFT and Substrate-Effect-Corrected Nanoindentation

Knowledge of accurate values of elastic modulus of (Al<sub>1–<italic>x</italic></sub>Sc<sub><italic>x</italic></sub>)N is required for design of piezoelectric resonators and related devices. Thin films of (Al<sub>1–<italic>x</italic></sub>Sc<sub><italic>x</italic></sub>)N across the entire composition space are deposited and characterized. Accuracy of modulus measurements is improved and quantified by removing the influence of substrate effects and by direct comparison of experimental results with density functional theory calculations. The 5%–30% Sc compositional range is of particular interest for piezoelectric applications and is covered at higher compositional resolution here than in previous work. The reduced elastic modulus is found to decrease by as much as 40% with increasing Sc concentration in the wurtzite phase according to both experimental and computational techniques, whereas Sc-rich rocksalt-structured films exhibit little variation in modulus with composition.

[1]  G. Brennecka,et al.  Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N , 2018, Physical Review Materials.

[2]  Geoff L. Brennecka,et al.  Enhanced piezoelectric response of AlN via CrN alloying. , 2017, 1708.00490.

[3]  P. Frach,et al.  Effect of scandium content on structure and piezoelectric properties of AlScN films deposited by reactive pulse magnetron sputtering , 2017 .

[4]  S. Lany,et al.  Synthesis and Characterization of (Sn,Zn)O Alloys , 2016 .

[5]  P. Delobelle,et al.  Modeling and characterization of piezoelectric beams based on an aluminum nitride thin‐film layer , 2016 .

[6]  T. Laurila,et al.  Piezoelectric coefficients and spontaneous polarization of ScAlN , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  T. Yokoyama,et al.  Highly enhanced piezoelectric property of co-doped AlN , 2015 .

[8]  U. Schmid,et al.  Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying Laser Doppler Vibrometry and FEM simulations☆ , 2015, Sensors and actuators. A, Physical.

[9]  T. Yokoyama,et al.  Effect of Mg and Zr co-doping on piezoelectric AlN thin films for bulk acoustic wave resonators , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[10]  Y. Cordier,et al.  Young's modulus extraction of epitaxial heterostructure AlGaN/GaN for MEMS application , 2014 .

[11]  Wai Yuen Fu,et al.  Elastic constants and critical thicknesses of ScGaN and ScAlN , 2013 .

[12]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[13]  Houfang Liu,et al.  Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature , 2013 .

[14]  Gianluca Piazza,et al.  Piezoelectric aluminum nitride thin films for microelectromechanical systems , 2012 .

[15]  M. Jarrell,et al.  Electronic, structural, and elastic properties of metal nitrides XN (X = Sc, Y): A first principle study , 2012, 1206.4277.

[16]  Paul Muralt,et al.  Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films , 2012 .

[17]  A. L. Ivanovskii,et al.  Elastic and electronic properties of hexagonal rhenium sub‐nitrides Re3N and Re2N in comparison with hcp‐Re and wurtzite‐like rhenium mononitride ReN , 2010, 1011.3932.

[18]  G. Wingqvist,et al.  Wurtzite-structure Sc1-xAlxN solid solution films grown by reactive magnetron sputter epitaxy structural characterization and first-principles calculations , 2010 .

[19]  Y. Lai,et al.  Nanomechanical properties of AlN(1 0 3) thin films by nanoindentation , 2010 .

[20]  T. Lin,et al.  Berkovich Nanoindentation on AlN Thin Films , 2010, Nanoscale research letters.

[21]  C. Ciobanu,et al.  Elastic constants of β -eucryptite studied by density functional theory , 2009, 0912.4525.

[22]  A. Teshigahara,et al.  Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films , 2009 .

[23]  Y. Lai,et al.  Structural and mechanical characteristics of (1 0 3) AlN thin films prepared by radio frequency magnetron sputtering , 2009 .

[24]  J. Vlassak,et al.  Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation , 2009 .

[25]  P. Blaha,et al.  Calculation of the lattice constant of solids with semilocal functionals , 2009 .

[26]  M. Akiyama,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[27]  A. Ruban,et al.  Ab initio calculations of elastic properties of Pt–Sc alloys , 2008 .

[28]  Lukasz Nieradko,et al.  AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers , 2008 .

[29]  Oliver Ambacher,et al.  Piezoelectric properties of polycrystalline AlN thin films for MEMS application , 2006 .

[30]  F. Ulm,et al.  Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters , 2004 .

[31]  H. Maciel,et al.  High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness , 2004 .

[32]  L. Vergara,et al.  SAW characteristics of AlN films sputtered on silicon substrates. , 2004, Ultrasonics.

[33]  K. Yoon,et al.  Relationship between residual stress and structural properties of AlN films deposited by r.f. reactive sputtering , 2003 .

[34]  Omar Elmazria,et al.  Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures , 2002 .

[35]  Martin Eickhoff,et al.  Nanotechnology for SAW devices on AlN epilayers , 2002 .

[36]  B. Bhushan,et al.  A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications , 2002 .

[37]  Ying-Chung Chen,et al.  Synthesis of C-Axis-Oriented Aluminum Nitride Films by Reactive RF Magnetron Sputtering for Surface Acoustic Wave , 2001 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  A. Steckenborn,et al.  Determination of Young's moduli of micromechanical thin films using the resonance method , 1992 .

[42]  M. A. Odintzov,et al.  AlN films for SAW sensors , 1991 .

[43]  K. Petersen,et al.  Young’s modulus measurements of thin films using micromechanics , 1979 .

[44]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[45]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[46]  F. Lotgering,et al.  Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I , 1959 .

[47]  John F Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[48]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[49]  H. Y. Yu,et al.  The effect of substrate on the elastic properties of films determined by the indentation test — axisymmetric boussinesq problem , 1990 .