Development of genetic manipulation tools in Macrostomum lignano for dissection of molecular mechanisms of regeneration

Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration and tissue patterning. However, the lack of transgenesis methods significantly hampers their wider use. Here we report development of a transgenesis method for Macrostomum lignano , a basal flatworm with excellent regeneration capacity. We demonstrate that microinjection of DNA constructs into fertilized one-cell stage eggs, followed by a low dose of irradiation, frequently results in random integration of the transgene in the genome and its stable transmission through the germline. To facilitate selection of promoter regions for transgenic reporters, we assembled and annotated the M. lignano genome, including genome-wide mapping of transcription start regions, and show its utility by generating multiple stable transgenic lines expressing fluorescent proteins under several tissue-specific promoters. The reported transgenesis method and annotated genome sequence will permit sophisticated genetic studies on stem cells and regeneration using M. lignano as a model organism.

[1]  L. Bachmann,et al.  Atp8 is in the ground pattern of flatworm mitochondrial genomes , 2017, BMC Genomics.

[2]  L. Schärer,et al.  Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm , 2017, Evolution; international journal of organic evolution.

[3]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[4]  David R. Liu,et al.  CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes , 2017, Cell.

[5]  Sofia M. C. Robb,et al.  Embryonic origin of adult stem cells required for tissue homeostasis and regeneration , 2017, eLife.

[6]  Eugene Berezikov,et al.  Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano , 2016, eLife.

[7]  Marten Postma,et al.  mScarlet: a bright monomeric red fluorescent protein for cellular imaging , 2016, Nature Methods.

[8]  A. Chinnaiyan,et al.  TACO produces robust multi-sample transcriptome assemblies from RNA-seq , 2016, Nature Methods.

[9]  Eugene Berezikov,et al.  Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology , 2016, PloS one.

[10]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[11]  R. Gerlai Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics? , 2016, Front. Genet..

[12]  M. Ohtsuka,et al.  Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new , 2016, Biology Direct.

[13]  F. Ronquist,et al.  Xenacoelomorpha is the sister group to Nephrozoa , 2016, Nature.

[14]  P. David,et al.  Quantifying episodes of sexual selection: Insights from a transparent worm with fluorescent sperm , 2016, Evolution; international journal of organic evolution.

[15]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[16]  Osama El Demerdash,et al.  Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano , 2015, Proceedings of the National Academy of Sciences.

[17]  Hani Z. Girgis Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale , 2015, BMC Bioinformatics.

[18]  S. Kelly,et al.  TransRate: reference-free quality assessment of de novo transcriptome assemblies , 2015, bioRxiv.

[19]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[20]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[21]  Matthias Zytnicki,et al.  Tedna: a transposable element de novo assembler , 2014, Bioinform..

[22]  P. Reddien,et al.  Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. , 2014, Cell stem cell.

[23]  S. Rosser,et al.  New Applications for Phage Integrases , 2014, Journal of molecular biology.

[24]  S. Lapan,et al.  Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea , 2014, Stem cell reports.

[25]  T. Janicke,et al.  Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection , 2014, BMC Evolutionary Biology.

[26]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[27]  E. Berezikov,et al.  SEX ALLOCATION ADJUSTMENT TO MATING GROUP SIZE IN A SIMULTANEOUS HERMAPHRODITE , 2013, Evolution; international journal of organic evolution.

[28]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[29]  L. Bachmann,et al.  Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach , 2013, Nucleic acids research.

[30]  A. Sánchez Alvarado,et al.  The history and enduring contributions of planarians to the study of animal regeneration , 2013, Wiley interdisciplinary reviews. Developmental biology.

[31]  Michael W. Davidson,et al.  A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum , 2013, Nature Methods.

[32]  Yaofeng Zhao,et al.  Mechanism of random integration of foreign DNA in transgenic mice , 2013, Transgenic Research.

[33]  Piero Carninci,et al.  High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression , 2013, Genome research.

[34]  J. Rink Stem cell systems and regeneration in planaria , 2012, Development Genes and Evolution.

[35]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[36]  Bud Mishra,et al.  Reevaluating Assembly Evaluations with Feature Response Curves: GAGE and Assemblathons , 2012, PloS one.

[37]  Eugene Berezikov,et al.  The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research , 2012, Stem cells international.

[38]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[39]  K. Agata,et al.  Regeneration in an evolutionarily primitive brain – the planarian Dugesia japonica model , 2011, The European journal of neuroscience.

[40]  P. Reddien,et al.  The cellular basis for animal regeneration. , 2011, Developmental cell.

[41]  Irving E. Wang,et al.  Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration , 2011, Science.

[42]  Stefanie Redemann,et al.  Codon adaptation–based control of protein expression in C. elegans , 2011, Nature Methods.

[43]  W. Pirovano,et al.  Scaffolding pre-assembled contigs using SSPACE , 2011, Bioinform..

[44]  J. Boeke,et al.  Transposon-mediated genome manipulation in vertebrates , 2009, Nature Methods.

[45]  Bernhard Egger,et al.  The free-living flatworm Macrostomum lignano: A new model organism for ageing research , 2009, Experimental Gerontology.

[46]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[47]  V. Hartenstein,et al.  The exceptional stem cell system of Macrostomum lignano: Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation , 2007, Frontiers in Zoology.

[48]  B. Egger,et al.  The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration , 2006, Development Genes and Evolution.

[49]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[50]  V. Hartenstein,et al.  The embryonic development of the flatworm Macrostomum sp. , 2004, Development Genes and Evolution.

[51]  W. Gehring,et al.  Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Joly,et al.  I-SceI meganuclease mediates highly efficient transgenesis in fish , 2002, Mechanisms of Development.

[53]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[54]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[55]  T. Kanda,et al.  Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells , 1998, Current Biology.

[56]  W. G. Kelly,et al.  Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. , 1997, Genetics.

[57]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[58]  M. Berriman,et al.  REAPR: a universal tool for genome assembly evaluation. , 2013, Genome biology.

[59]  J. Johnston,et al.  Genome size determination using flow cytometry of propidium iodide-stained nuclei. , 2011, Methods in molecular biology.

[60]  O. Hobert,et al.  Vector-free DNA constructs improve transgene expression in C. elegans , 2008, Nature Methods.

[61]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[62]  R. Porter,et al.  DNA transformation. , 1988, Methods in enzymology.