Strategies for stable water splitting via protected photoelectrodes.

Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers to overcome is to achieve a stable PEC reaction in either strongly basic or acidic electrolytes without degradation of the semiconductor photoelectrodes. In this work, we discuss fundamental aspects of protection strategies for achieving stable solid/liquid interfaces. We then analyse the charge transfer mechanism through the protection layers for both photoanodes and photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems.

[1]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[2]  Jae Sung Lee,et al.  Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting , 2013, Scientific Reports.

[3]  S. Bent,et al.  Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.

[4]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[5]  O. Hansen,et al.  Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media , 2016 .

[6]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[7]  K. Domen,et al.  Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5 † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02346c Click here for additional data file. , 2014, Chemical science.

[8]  J. Turner,et al.  Photoelectrolysis of HBr and HI Using a Monolithic Combined Photoelectrochemical/Photovoltaic Device , 1999 .

[9]  Feng Gao,et al.  Low‐Temperature Combustion‐Synthesized Nickel Oxide Thin Films as Hole‐Transport Interlayers for Solution‐Processed Optoelectronic Devices , 2014 .

[10]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[11]  J. Bockris,et al.  Investigation of a protective conducting silica film on n-silicon , 1984 .

[12]  Tung,et al.  Electron transport at metal-semiconductor interfaces: General theory. , 1992, Physical review. B, Condensed matter.

[13]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[14]  N. Lewis,et al.  Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions , 2016 .

[15]  Anders Hagfeldt,et al.  Bipolar Membrane‐Assisted Solar Water Splitting in Optimal pH , 2016 .

[16]  K. Sun,et al.  Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. , 2013, Nano letters.

[17]  Shinzo Takata,et al.  Transparent conducting p-type NiO thin films prepared by magnetron sputtering , 1993 .

[18]  Junjie Li,et al.  Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. , 2016, Journal of the American Chemical Society.

[19]  L. Lauhon,et al.  Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting. , 2016, Nano letters.

[20]  Matthew J. Greaney,et al.  Nickel oxide particles catalyze photochemical hydrogen evolution from water--nanoscaling promotes p-type character and minority carrier extraction. , 2015, ACS nano.

[21]  Xiaoxiao Huang,et al.  3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium‐Sulfur Batteries , 2016 .

[22]  O. Hansen,et al.  Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. , 2014, The journal of physical chemistry letters.

[23]  J. Switzer,et al.  An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. , 2015, Nature materials.

[24]  Christophe Ballif,et al.  Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. , 2013, Nano letters.

[25]  M. Süess,et al.  Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting , 2014 .

[26]  Matthew R. Shaner,et al.  Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition , 2013 .

[27]  J. Sturm,et al.  Electronically Passivated Hole‐Blocking Titanium Dioxide/Silicon Heterojunction for Hybrid Silicon Photovoltaics , 2016 .

[28]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .

[29]  Joshua M. Spurgeon,et al.  Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[30]  Dong Suk Kim,et al.  Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. , 2015, ACS nano.

[31]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[32]  Thomas Hannappel,et al.  Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure , 2015, Nature Communications.

[33]  S. Boettcher,et al.  Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes. , 2014, ACS applied materials & interfaces.

[34]  Zhong Lin Wang Energy harvesting for self-powered nanosystems , 2008 .

[35]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[36]  W. Göpel,et al.  Interface-reactions of Pt/TiO2: Comparative electrical, XPS-, and AES-depth profile investigations , 1991 .

[37]  H. Dai,et al.  High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation , 2013, Science.

[38]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[39]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[40]  Wilson A. Smith,et al.  Engineering the kinetics and interfacial energetics of Ni/Ni–Mo catalyzed amorphous silicon carbide photocathodes in alkaline media , 2016 .

[41]  Paul C. McIntyre,et al.  Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes , 2013 .

[42]  C. Kaufmann,et al.  Efficient and Stable TiO2:Pt–Cu(In,Ga)Se2 Composite Photoelectrodes for Visible Light Driven Hydrogen Evolution , 2015 .

[43]  Shannon W. Boettcher,et al.  Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles , 2015 .

[44]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[45]  Makoto Konagai,et al.  Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film , 2010 .

[46]  M. Zeman,et al.  A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution , 2016 .

[47]  R. Ruoff,et al.  On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide–BiVO4 composite electrodes , 2014 .

[48]  Chengxiang Xiang,et al.  Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. , 2015, ChemSusChem.

[49]  João Lúcio de Azevedo,et al.  Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes , 2016 .

[50]  P. Notten,et al.  Efficient water reduction with gallium phosphide nanowires , 2015, Nature Communications.

[51]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[52]  Tuo Wang,et al.  Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting. , 2015, Chemical communications.

[53]  Luca Boarino,et al.  Monolithic cells for solar fuels. , 2014, Chemical Society reviews.

[54]  Adam C. Nielander,et al.  Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide , 2015 .

[55]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[56]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[57]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[58]  S. Campidelli,et al.  A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. , 2013, Energy, sustainability and society.

[59]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[60]  Chunming Wang,et al.  Enhanced electrocatalytic oxygen evolution of α-Co(OH)2 nanosheets on carbon nanotube/polyimide films. , 2016, Nanoscale.

[61]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[62]  M. Shen,et al.  Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer , 2015 .

[63]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[64]  O. Hansen,et al.  MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution. , 2013, Physical chemistry chemical physics : PCCP.

[65]  O. Hansen,et al.  Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2 , 2013 .

[66]  Jin-Young Jung,et al.  Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution , 2014 .

[67]  Alfred Ludwig,et al.  Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability , 2016 .

[68]  Bruce A. Parkinson,et al.  Deep and Shallow TiO2 Gap States on Cleaved Anatase Single Crystal (101) Surfaces, Nanocrystalline Anatase Films, and ALD Titania Ante and Post Annealing , 2015 .

[69]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .

[70]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[71]  K. Domen,et al.  Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes , 2015 .

[72]  S. Boettcher,et al.  Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. , 2014, Journal of the American Chemical Society.

[73]  N. Takeno Atlas of Eh-pH diagrams , 2005 .

[74]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[75]  K. Domen,et al.  Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. , 2013, Journal of the American Chemical Society.

[76]  T. Jaramillo,et al.  Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials , 2014 .

[77]  Li Ji,et al.  A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. , 2015, Nature nanotechnology.

[78]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[79]  Christopher Hahn,et al.  Tandem Core-Shell Si-Ta3N5 Photoanodes for Photoelectrochemical Water Splitting. , 2016, Nano letters.

[80]  J. Garrido,et al.  Photocatalytic Stability of Single- and Few-Layer MoS₂. , 2015, ACS nano.

[81]  J. Barber,et al.  Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. , 2015, Nano letters.

[82]  N. Lewis,et al.  The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. , 2015, ACS Applied Materials and Interfaces.

[83]  M. Bonn,et al.  Enhanced Kinetics of Hole Transfer and Electrocatalysis during Photocatalytic Oxygen Evolution by Cocatalyst Tuning , 2016 .

[84]  F. Toma,et al.  p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[85]  H. Dai,et al.  Nickel-coated silicon photocathode for water splitting in alkaline electrolytes , 2015, Nano Research.

[86]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[87]  Paul A. Kohl,et al.  Semiconductor Electrodes XI . Behavior of n‐ and p‐Type Single Crystal Semconductors Covered with Thin Films , 1977 .

[88]  Adam C. Nielander,et al.  Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes. , 2015, The journal of physical chemistry letters.

[89]  Kazuhiko Maeda,et al.  Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. , 2010, Journal of the American Chemical Society.

[90]  S. Boettcher,et al.  Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. , 2015, Journal of the American Chemical Society.

[91]  Sang Ho Oh,et al.  Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures , 2014, Nature Communications.

[92]  Sungho Jin,et al.  Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation. , 2014, Physical chemistry chemical physics : PCCP.

[93]  K. Domen,et al.  Hydrogen evolution from water using Ag(x)Cu(1-x)GaSe2 photocathodes under visible light. , 2014, Physical chemistry chemical physics : PCCP.

[94]  Fan Zuo,et al.  Branched WO3 Nanosheet Array with Layered C3N4 Heterojunctions and CoOx Nanoparticles as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation , 2014, Advanced materials.

[95]  P. Hurley,et al.  Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. , 2016, Nature materials.

[96]  O. Hansen,et al.  Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst , 2015 .

[97]  I. Chorkendorff,et al.  Formation of a p–n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV , 2014 .

[98]  Matthew R. Shaner,et al.  Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 , 2015 .

[99]  F. Toma,et al.  Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. , 2014, Journal of the American Chemical Society.

[100]  Photoelectrolysis of Water with Semiconductor Materials , 1977 .

[101]  Adam Heller,et al.  Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .

[102]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[103]  Jenny Nelson,et al.  Random walk models of charge transfer and transport in dye sensitized systems , 2004 .

[104]  Lin-wang Wang,et al.  Oxygen vacancy and hole conduction in amorphous TiO2. , 2015, Physical chemistry chemical physics : PCCP.

[105]  Miao Zhong,et al.  Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[106]  Oumarou Savadogo,et al.  Chemically and electrochemically deposited thin films for solar energy materials , 1998 .

[107]  N. Lewis,et al.  Investigation of the size-scaling behavior of spatially nonuniform barrier height contacts to semiconductor surfaces using ordered nanometer-scale nickel arrays on silicon electrodes , 2001 .

[108]  Saeid Nahavandi,et al.  Dynamic Nanofin Heat Sinks , 2014 .

[109]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[110]  O. Hansen,et al.  Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. , 2014, The journal of physical chemistry letters.

[111]  R. Hamers,et al.  Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. , 2014, Journal of the American Chemical Society.

[112]  Ib Chorkendorff,et al.  Solar-fuel generation: Towards practical implementation. , 2012, Nature materials.

[113]  Ib Chorkendorff,et al.  Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution , 2015 .

[114]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[115]  N. Lewis,et al.  Photoelectrochemical Behavior of n‑type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition , 2013 .

[116]  N. Lewis,et al.  Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition , 2014 .

[117]  T. Heinzel,et al.  Dynamics of hydrogen sensing with Pt/TiO2 Schottky diodes , 2013 .

[118]  Y. Ping,et al.  Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting , 2015, Nature Communications.

[119]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[120]  Leone Spiccia,et al.  Dominating Energy Losses in NiO p‐Type Dye‐Sensitized Solar Cells , 2015 .

[121]  R. L. Meirhaeghe,et al.  A study of the electrical and interfacial properties of sputtered Ti/Si and sputtered TiSi2/Si Schottky barriers , 1988 .

[122]  Can Li,et al.  A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. , 2014, Angewandte Chemie.

[123]  J. O'm. Bockris,et al.  Significant Efficiency Increase in Self‐Driven Photoelectrochemical Cell for Water Photoelectrolysis , 1987 .

[124]  Kazunari Domen,et al.  Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. , 2013, Journal of the American Chemical Society.

[125]  N. Lewis,et al.  Sputtered NiOx Films for Stabilization of p+n‐InP Photoanodes for Solar‐Driven Water Oxidation , 2015 .

[126]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[127]  Ib Chorkendorff,et al.  Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes , 2015 .

[128]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[129]  Ib Chorkendorff,et al.  Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. , 2015, The journal of physical chemistry letters.

[130]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[131]  H. Lewerenz Semiconductor Surface Transformations for Photoelectrochemical Energy Conversion , 2014 .

[132]  K. Domen,et al.  Enhanced photoelectrochemical properties of CuGa3Se5 thin films for water splitting by the hydrogen mediated co-evaporation method , 2012 .

[133]  O. Hansen,et al.  Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction , 2017 .

[134]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[135]  Luis M. Pazos-Outón,et al.  Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water , 2016, Nature Communications.

[136]  O. Hansen,et al.  Back-Illuminated Si-Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer , 2016 .

[137]  M. Roeffaers,et al.  Electrochemistry: Photocatalysts in close-up , 2016, Nature.

[138]  C. Battaglia,et al.  Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes , 2015 .

[139]  N. Lewis,et al.  Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings , 2014 .

[140]  Huakun Liu,et al.  Nanofibrous Co3O4/PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithium‐Oxygen Batteries , 2016 .

[141]  A. Bard Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors , 1979 .

[142]  P. McIntyre,et al.  Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells. , 2016, The journal of physical chemistry letters.

[143]  J. Augustynski,et al.  Highly Efficient and Stable Solar Water Splitting at (Na)WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst , 2016 .

[144]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[145]  R. L. Meirhaeghe,et al.  A study of the electrical and photovoltaic properties of magnetron sputtered Ti/p-InP Schottky barriers , 1988 .

[146]  Bernhard Kaiser,et al.  Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting , 2016 .

[147]  T. Andreu,et al.  Conformal chalcopyrite based photocathode for solar refinery applications , 2016 .

[148]  Peng Wang,et al.  Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. , 2013, ACS nano.

[149]  W. Shen,et al.  Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production , 2016, Scientific Reports.

[150]  J. Messinger,et al.  Transparent Nanoparticulate FeOOH Improves the Performance of a WO3 Photoanode in a Tandem Water-Splitting Device , 2016 .

[151]  Shixun Wang,et al.  Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes: Part I. NiO(OH)-coated n+/p-Si and n+/n-Si electrodes for catalytic oxygen evolution , 1987 .

[152]  Jungang Hou,et al.  Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting , 2015 .

[153]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[154]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[155]  Sungho Jin,et al.  Nickel oxide functionalized silicon for efficient photo-oxidation of water , 2012 .

[156]  R. C. Kainthla,et al.  Protection of n‐Si Photoanode against Photocorrosion in Photoelectrochemical Cell for Water Electrolysis , 1986 .

[157]  J. S. Lee,et al.  Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. , 2014, ACS applied materials & interfaces.

[158]  Stafford W. Sheehan,et al.  Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts. , 2015, Angewandte Chemie.

[159]  James L. Young,et al.  Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes. , 2016, The journal of physical chemistry letters.

[160]  Nathan S. Lewis,et al.  An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system , 2014 .

[161]  K. Domen,et al.  Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO2 N Particles. , 2016, Small.

[162]  R. T. Tung,et al.  ELECTRON TRANSPORT OF INHOMOGENEOUS SCHOTTKY BARRIERS , 1991 .

[163]  Tao Yu,et al.  Co3O4 Nanoparticles as Robust Water Oxidation Catalysts Towards Remarkably Enhanced Photostability of a Ta3N5 Photoanode , 2012 .

[164]  H. Abruña,et al.  Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes , 1981 .

[165]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .