Online Edge Coloring Algorithms via the Nibble Method

Nearly thirty years ago, Bar-Noy, Motwani and Naor [IPL'92] conjectured that an online $(1+o(1))\Delta$-edge-coloring algorithm exists for $n$-node graphs of maximum degree $\Delta=\omega(\log n)$. This conjecture remains open in general, though it was recently proven for bipartite graphs under \emph{one-sided vertex arrivals} by Cohen et al.~[FOCS'19]. In a similar vein, we study edge coloring under widely-studied relaxations of the online model. Our main result is in the \emph{random-order} online model. For this model, known results fall short of the Bar-Noy et al.~conjecture, either in the degree bound [Aggarwal et al.~FOCS'03], or number of colors used [Bahmani et al.~SODA'10]. We achieve the best of both worlds, thus resolving the Bar-Noy et al.~conjecture in the affirmative for this model. Our second result is in the adversarial online (and dynamic) model with \emph{recourse}. A recent algorithm of Duan et al.~[SODA'19] yields a $(1+\epsilon)\Delta$-edge-coloring with poly$(\log n/\epsilon)$ recourse. We achieve the same with poly$(1/\epsilon)$ recourse, thus removing all dependence on $n$. Underlying our results is one common offline algorithm, which we show how to implement in these two online models. Our algorithm, based on the Rodl Nibble Method, is an adaptation of the distributed algorithm of Dubhashi et al.~[TCS'98]. The Nibble Method has proven successful for distributed edge coloring. We display its usefulness in the context of online algorithms.

[1]  Aranyak Mehta,et al.  Online bipartite matching with unknown distributions , 2011, STOC '11.

[2]  Amit Kumar,et al.  The power of deferral: maintaining a constant-competitive steiner tree online , 2013, STOC '13.

[3]  David B. Shmoys,et al.  Efficient Parallel Algorithms for Edge Coloring Problems , 1987, J. Algorithms.

[4]  Ola Svensson,et al.  Online Matching with General Arrivals , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[5]  David A. Grable,et al.  A Large Deviation Inequality for Functions of Independent, Multi-Way Choices , 1998, Combinatorics, Probability and Computing.

[6]  Rajeev Motwani,et al.  The Greedy Algorithm is Optimal for On-Line Edge Coloring , 1992, Inf. Process. Lett..

[7]  Amit Kumar,et al.  Online and dynamic algorithms for set cover , 2016, STOC.

[8]  Adam Meyerson,et al.  Online facility location , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Berthold Vöcking,et al.  Primal beats dual on online packing LPs in the random-order model , 2013, STOC.

[10]  A. Khursheed,et al.  Positive dependence in multivariate distributions , 1981 .

[11]  Anupam Gupta,et al.  Random-Order Models , 2020, Beyond the Worst-Case Analysis of Algorithms.

[12]  David Wajc,et al.  Randomized Online Matching in Regular Graphs , 2018, SODA.

[13]  Amit Kumar,et al.  Fully-Dynamic Bin Packing with Little Repacking , 2018, ICALP.

[14]  Alessandro Panconesi,et al.  Near-Optimal, Distributed Edge Colouring via the Nibble Method , 1996, Theor. Comput. Sci..

[15]  Amit Kumar,et al.  Online Steiner Tree with Deletions , 2013, SODA.

[16]  Moses Charikar,et al.  Improved Algorithms for Edge Colouring in the W-Streaming Model , 2021, SOSA.

[17]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[18]  Aranyak Mehta,et al.  Online Graph Edge-Coloring in the Random-Order Arrival Model , 2012, Theory Comput..

[19]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[20]  Devavrat Shah,et al.  Switch scheduling via randomized edge coloring , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[21]  Leonid Barenboim,et al.  Fully-Dynamic Graph Algorithms with Sublinear Time Inspired by Distributed Computing , 2017, ICCS.

[22]  Ilan Reuven Cohen,et al.  Tight Bounds for Online Edge Coloring , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[23]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[24]  Richard Cole,et al.  Edge-Coloring Bipartite Multigraphs in O(E logD) Time , 1999, Comb..

[25]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[26]  Martin Skutella,et al.  The Power of Recourse for Online MST and TSP , 2012, SIAM J. Comput..

[27]  Mohammad Mahdian,et al.  Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs , 2011, STOC '11.

[28]  Jacob Holm,et al.  Online Bipartite Matching with Amortized Replacements , 2018, SODA.

[29]  Seth Pettie,et al.  The Complexity of Distributed Edge Coloring with Small Palettes , 2017, SODA.

[30]  Amit Kumar,et al.  Maintaining Assignments Online: Matching, Scheduling, and Flows , 2014, SODA.

[31]  Hsin-Hao Su,et al.  (2Δ - l)-Edge-Coloring is Much Easier than Maximal Matching in the Distributed Setting , 2015, SODA.

[32]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[33]  Morteza Zadimoghaddam,et al.  Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order , 2015, STOC.

[34]  Moni Naor,et al.  The Probabilistic Method Yields Deterministic Parallel Algorithms , 1994, J. Comput. Syst. Sci..

[35]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[36]  Dariusz Leniowski,et al.  Online Bipartite Matching in Offline Time , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[37]  Ran Duan,et al.  Dynamic Edge Coloring with Improved Approximation , 2019, SODA.

[38]  Hsin-Hao Su,et al.  Towards the locality of Vizing’s theorem , 2019, STOC.

[39]  David Wajc,et al.  Rounding dynamic matchings against an adaptive adversary , 2019, STOC.

[40]  Monika Henzinger,et al.  Dynamic Algorithms for Graph Coloring , 2017, SODA.