Inflammation and Atherothrombosis

[1]  F. Crea,et al.  Anti-inflammatory treatment of acute coronary syndromes: the need for precision medicine. , 2016, European heart journal.

[2]  Jeroen J. Bax,et al.  2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). , 2011, European heart journal.

[3]  P. Libby,et al.  TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. , 2015, European heart journal.

[4]  F. Crea,et al.  Increased PTPN22 expression and defective CREB activation impair regulatory T-cell differentiation in non-ST-segment elevation acute coronary syndromes. , 2015, Journal of the American College of Cardiology.

[5]  S. Hoerstrup,et al.  Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes , 2014, European heart journal.

[6]  Michail I. Papafaklis,et al.  Endothelial Shear Stress and Coronary Plaque Characteristics in HumansCLINICAL PERSPECTIVE , 2014 .

[7]  F. Crea,et al.  Altered CD31 expression and activity in helper T cells of acute coronary syndrome patients , 2014, Basic Research in Cardiology.

[8]  Paul M Ridker,et al.  Anti-inflammatory therapies for cardiovascular disease. , 2014, European heart journal.

[9]  K. Hirata,et al.  Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. , 2014, Cardiovascular research.

[10]  G. Niccoli,et al.  Advances in mechanisms, imaging and management of the unstable plaque. , 2014, Atherosclerosis.

[11]  J. Alpert,et al.  How to use C-reactive protein in acute coronary care. , 2013, European heart journal.

[12]  Akiko Maehara,et al.  Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study. , 2013, JACC. Cardiovascular imaging.

[13]  F. Crea,et al.  Identification of unique adaptive immune system signature in acute coronary syndromes. , 2013, International journal of cardiology.

[14]  F. Trotta,et al.  Interleukin-17 in atherosclerosis and cardiovascular disease: the good, the bad, and the unknown. , 2013, European heart journal.

[15]  F. Crea,et al.  Pathogenesis of acute coronary syndromes. , 2013, Journal of the American College of Cardiology.

[16]  C. Mauri,et al.  Immune regulatory function of B cells. , 2012, Annual review of immunology.

[17]  F. Crea,et al.  Anti-inflammatory treatment of acute coronary syndromes. , 2011, Current pharmaceutical design.

[18]  F. Crea,et al.  Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. , 2011, European heart journal.

[19]  Mitsuaki Isobe,et al.  In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. , 2011, European heart journal.

[20]  P. Libby,et al.  Progress and challenges in translating the biology of atherosclerosis , 2011, Nature.

[21]  U. Sechtem,et al.  3-year follow-up of patients with coronary artery spasm as cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study follow-up. , 2011, Journal of the American College of Cardiology.

[22]  F. Eberli,et al.  Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. , 2010, European heart journal.

[23]  J. Danesh,et al.  C‐reactive protein and coronary heart disease: a critical review , 2008, Journal of internal medicine.

[24]  P. Libby,et al.  Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. , 2008, Circulation.

[25]  W. Kiosses,et al.  Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events , 2008, The Journal of experimental medicine.

[26]  G. Niccoli,et al.  High telomerase activity in neutrophils from unstable coronary plaques. , 2007, Journal of the American College of Cardiology.

[27]  M. Shin,et al.  Synergistic Proinflammatory Effects of the Antiviral Cytokine Interferon-&agr; and Toll-Like Receptor 4 Ligands in the Atherosclerotic Plaque , 2007, Circulation.

[28]  A. Rebuzzi,et al.  Unusual CD4+CD28nullT Lymphocytes and Recurrence of Acute Coronary Events , 2007 .

[29]  F. Crea,et al.  Antibody Response to Chlamydial Heat Shock Protein 60 Is Strongly Associated With Acute Coronary Syndromes , 2003, Circulation.

[30]  F. Crea,et al.  Widespread coronary inflammation in unstable angina. , 2003, The New England journal of medicine.

[31]  R. Virmani,et al.  Differential Accumulation of Proteoglycans and Hyaluronan in Culprit Lesions: Insights Into Plaque Erosion , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[32]  R. Frye,et al.  Molecular Fingerprint of Interferon-&ggr; Signaling in Unstable Angina , 2001, Circulation.

[33]  R. Virmani,et al.  Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[34]  A. Rebuzzi,et al.  The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. , 1994, The New England journal of medicine.