Renormalization in Minkowski space–time

The functional renormalization group method is applied for a scalar theory in Minkowski space-time. It is argued that the appropriate choice of the subtraction point is more important in Minkowski than in Euclidean space-time. The parameters of the cutoff theory, defined by a subtraction point in the quasi-particle domain, are complex due to the mass-shell contributions to the blocking and the renormalization group flow becomes more involved. The Landau poles are avoided when the parameters are complexified. The absence of the UV pole owing to the marginal parameters makes the scalar theory asymptotically free in four dimensions. However the continuation of the trajectory beyond the regularized IR pole at the UV-IR crossover in the phase with spontaneously broken symmetry is possible only if the non-trivial saddle points to the blocking are taken into account.

[1]  Sven Huelsmann,et al.  Spectral functions from the real-time functional renormalization group , 2020, 2009.04194.

[2]  A. Cohen Random fields , 2019, Applied Stochastic Analysis.

[3]  J. Polonyi Boost invariant regulator for field theories , 2018, International Journal of Modern Physics A.

[4]  N. Strodthoff Self-consistent spectral functions in the O ( N ) model from the functional renormalization group , 2017 .

[5]  S. Nagy,et al.  Quantum–classical transition in the Caldeira–Leggett model , 2016, 1603.07495.

[6]  Jan M. Pawlowski,et al.  Real time correlation functions and the functional renormalization group , 2015, 1508.01160.

[7]  L. Smekal,et al.  Spectral functions from the functional renormalization group , 2014, 1712.02093.

[8]  L. Smekal,et al.  Spectral Functions for the Quark-Meson Model Phase Diagram from the Functional Renormalization Group , 2013, 1311.0630.

[9]  J. Berges,et al.  Dynamic universality class of Model C from the functional renormalization group , 2013, 1307.1700.

[10]  Lorenz von Smekal,et al.  Real-time correlation functions in the $$O(N)$$O(N) model from the functional renormalization group , 2013, 1302.6199.

[11]  S. Diehl,et al.  Dynamical critical phenomena in driven-dissipative systems. , 2013, Physical review letters.

[12]  L. Smekal,et al.  Fluctuations in the quark-meson model for QCD with isospin chemical potential , 2012, 1207.0400.

[13]  B. Schaefer,et al.  Quark-meson-diquark model for two-color QCD , 2011, 1112.5401.

[14]  Stefan Floerchinger,et al.  Analytic continuation of functional renormalization group equations , 2011, 1112.4374.

[15]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[16]  T. Gasenzer,et al.  Far-from-equilibrium quantum many-body dynamics , 2010, 1003.4163.

[17]  S. Nagy,et al.  ONSET OF SYMMETRY BREAKING BY THE FUNCTIONAL RG METHOD , 2009, 0907.0144.

[18]  J. Berges,et al.  Nonthermal fixed points and the functional renormalization group , 2008, 0809.5208.

[19]  T. Gasenzer,et al.  Towards far-from-equilibrium quantum field dynamics: A functional renormalisation-group approach , 2007, 0710.4627.

[20]  S. G. Jakobs,et al.  Nonequilibrium functional renormalization group for interacting quantum systems. , 2007, Physical review letters.

[21]  J. Zanella,et al.  Inflation and nonequilibrium renormalization group , 2006, hep-ph/0611335.

[22]  H. Chat'e,et al.  A non-perturbative approach to critical dynamics , 2006, cond-mat/0610468.

[23]  T. Pruschke,et al.  Functional renormalization group for nonequilibrium quantum many-body problems , 2006, cond-mat/0609457.

[24]  A. Millis,et al.  Nonequilibrium quantum criticality in open electronic systems. , 2006, Physical review letters.

[25]  K. Aoki,et al.  Nonperturbative renormalization-group approach for quantum dissipative systems , 2002, quant-ph/0205002.

[26]  J. Zanella,et al.  Renormalization group and nonequilibrium action in stochastic field theory. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  E. Calzetta,et al.  Coarse-grained effective action and renormalization group theory in semiclassical gravity and cosmology , 2001, hep-th/0102199.

[28]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2000, hep-ph/0005122.

[29]  J. Alexandre,et al.  Instability induced renormalization , 1998, cond-mat/9803007.

[30]  Charis Anastopoulos Coarse grainings and irreversibility in quantum field theory , 1996, Physical Review D.

[31]  D. Dalvit,et al.  Exact CTP renormalization group equation for the coarse-grained effective action. , 1996, Physical review. D, Particles and fields.

[32]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[33]  Lombardo,et al.  Coarse graining and decoherence in quantum field theory. , 1995, Physical review. D, Particles and fields.

[34]  J. Polonyi Renormalization Group in Quantum Mechanics , 1994, hep-th/9409004.

[35]  T. Morris Derivative expansion of the exact renormalization group , 1994, hep-ph/9403340.

[36]  U. Ellwanger Flow equations and BRS invariance for Yang-Mills theories , 1994, hep-th/9402077.

[37]  A. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.

[38]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[39]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[40]  D. Bailin Field theory , 1979, Nature.

[41]  J. F. Nicoll,et al.  An exact one-particle-irreducible renormalization-group generator for critical phenomena , 1977 .

[42]  H. Georgi,et al.  Freedom at Moderate Energies: Masses in Color Dynamics , 1976 .

[43]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[44]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[45]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[46]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[47]  Sidney D. Drell,et al.  Relativistic Quantum Fields , 1965 .

[48]  N. N. Bogoliubow,et al.  Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder , 1957 .

[49]  Timothy Clarke,et al.  Physics I.2 , 2018 .

[50]  W. Zimmermann Convergence of Bogoliubov's method of renormalization in momentum space , 1969 .

[51]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[52]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.