Sensitivity based reduced approaches for structural reliability analysis

In the reliability analysis of a complex engineering structures a very large number of system parameters can be considered to be random variables. The difficulty in computing the failure probability increases rapidly with the number of variables. In this paper, a few methods are proposed whereby the number of variables can be reduced without compromising the accuracy of the reliability calculation. Based on the sensitivity of the failure surface, three new reduction methods, namely (a) gradient iteration method, (b) dominant gradient method, and (c) relative importance variable method, have been proposed. Numerical examples are provided to illustrate the proposed methods.

[1]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[2]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[3]  A. Kiureghian,et al.  Second-Order Reliability Approximations , 1987 .

[4]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[5]  C. Bucher Adaptive sampling — an iterative fast Monte Carlo procedure , 1988 .

[6]  Sondipon Adhikari,et al.  Reliability Analysis Using Parabolic Failure Surface Approximation , 2004 .

[7]  C. Bucher,et al.  A fast and efficient response surface approach for structural reliability problems , 1990 .

[8]  A. Kiureghian,et al.  Parameter sensitivity and importance measures in nonlinear finite element reliability analysis , 2005 .

[9]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[10]  Milík Tichý Applied Methods of Structural Reliability , 1993 .

[11]  C. Sundararajan,et al.  Probabilistic Structural Mechanics Handbook , 1995 .

[12]  Sankaran Mahadevan,et al.  Adaptive simulation for system reliability analysis of large structures , 2000 .

[13]  C. S. Manohar,et al.  Transient Dynamics of Stochastically Parametered Beams , 2000 .

[14]  R. Rackwitz,et al.  Quadratic Limit States in Structural Reliability , 1979 .

[15]  G. Schuëller,et al.  A critical appraisal of methods to determine failure probabilities , 1987 .

[16]  J. Beck,et al.  New Approximations for Reliability Integrals , 2001 .

[17]  Yan-Gang Zhao,et al.  New Approximations for SORM: Part 2 , 1999 .

[18]  Sankaran Mahadevan,et al.  Multiple Linearization Method for Nonlinear Reliability Analysis , 2001 .

[19]  C. S. Manohar,et al.  Statistics of vibration energy flow in randomly parametered trusses , 1998 .

[20]  Yoshisada Murotsu,et al.  Approach to failure mode analysis of large structures , 1999 .

[21]  Niels C. Lind,et al.  Methods of structural safety , 2006 .

[22]  Armen Der Kiureghian,et al.  Strategies for finding the design point in non-linear finite element reliability analysis , 2006 .

[23]  L. Tvedt Distribution of quadratic forms in normal space-application to structural reliability , 1990 .

[24]  Ramana V. Grandhi,et al.  Structural System Reliability Quantification Using Multipoint Function Approximations , 2002 .

[25]  Palle Thoft-Christensen,et al.  Structural Reliability Theory and Its Applications , 1982 .

[26]  C. R. Sundararajan,et al.  Probabilistic Structural Mechanics Handbook: Theory and Industrial Applications , 1995 .

[27]  Phaedon-Stelios Koutsourelakis Reliability of structures in high dimensions. Part II. Theoretical validation , 2004 .

[28]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[29]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[30]  H. Hong Simple Approximations for Improving Second-Order Reliability Estimates , 1999 .

[31]  Michel Ghosn,et al.  Development of a shredding genetic algorithm for structural reliability , 2005 .

[32]  H. U. Köylüoglu,et al.  New Approximations for SORM Integrals , 1994 .

[33]  Jorge E. Hurtado,et al.  Analysis of one-dimensional stochastic finite elements using neural networks , 2002 .

[34]  M. Hohenbichler,et al.  Improvement Of Second‐Order Reliability Estimates by Importance Sampling , 1988 .

[35]  Ramana V. Grandhi,et al.  Adaptation of fast Fourier transformations to estimate the structural failure probability , 2000 .

[36]  Ramana V. Grandhi,et al.  Adaption of fast Fourier transformations to estimate structural failure probability , 2003 .

[37]  Joel P. Conte,et al.  Finite Element Response Sensitivity Analysis of Steel-Concrete Composite Beams with Deformable Shear Connection , 2005 .

[38]  R Rackwitz Structural Reliability — Analysis and Prediction , 2001 .

[39]  Isaac Elishakoff,et al.  Refined second-order reliability analysis☆ , 1994 .

[40]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[41]  M. D. Stefano,et al.  Efficient algorithm for second-order reliability analysis , 1991 .

[42]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-374 a Critical Appraisal of Reliability Estimation Procedures for High Dimensions , 2022 .

[43]  Henrik O. Madsen,et al.  Omission sensitivity factors , 1988 .

[44]  C. Manohar,et al.  Improved Response Surface Method for Time-Variant Reliability Analysis of Nonlinear Random Structures Under Non-Stationary Excitations , 2004 .

[45]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[46]  C. S. Manohar,et al.  An improved response surface method for the determination of failure probability and importance measures , 2004 .

[47]  Sondipon Adhikari Asymptotic distribution method for structural reliability analysis in high dimensions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[49]  O. J. V. Chapman,et al.  Neural Networks in Probabilistic Structural Mechanics , 1995 .

[50]  Yan-Gang Zhao,et al.  NEW APPROXIMATIONS FOR SORM : PART 1 By , 1999 .

[51]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[52]  C. S. Manohar,et al.  DYNAMIC ANALYSIS OF FRAMED STRUCTURES WITH STATISTICAL UNCERTAINTIES , 1999 .

[53]  Ramana V. Grandhi,et al.  Higher-order failure probability calculation using nonlinear approximations , 1996 .

[54]  H. Saunders,et al.  Probabilistic Methods in Structural Engineering , 1984 .

[55]  R. Grandhi,et al.  Safety index calculation using intervening variables for structural reliability analysis , 1996 .

[56]  Ramana V. Grandhi,et al.  Efficient estimation of structural reliability for problems with uncertain intervals , 2001 .