On Erdős-Ko-Rado for random hypergraphs I

A family of sets is intersecting if no two of its members are disjoint, and has the Erdős–Ko–Rado property (or is EKR ) if each of its largest intersecting subfamilies has non-empty intersection. Denote by ${{\cal H}_k}(n,p)$ the random family in which each k -subset of {1, …, n } is present with probability p , independent of other choices. A question first studied by Balogh, Bohman and Mubayi asks: \begin{equation} {\rm{For what }}p = p(n,k){\rm{is}}{{\cal H}_k}(n,p){\rm{likely to be EKR}}? \end{equation} Here, for fixed c $k \lt \sqrt {cn\log n} $ we give a precise answer to this question, characterizing those sequences p = p ( n , k ) for which \begin{equation} {\mathbb{P}}({{\cal H}_k}(n,p){\rm{is EKR}}{\kern 1pt} ) \to 1{\rm{as }}n \to \infty . \end{equation}

[1]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[2]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[3]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[4]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[5]  J. van den Berg,et al.  A BK inequality for randomly drawn subsets of fixed size , 2011 .

[6]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[7]  L. Lovász Combinatorial problems and exercises , 1979 .

[8]  B. Bollobás The evolution of random graphs , 1984 .

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[10]  P. Erdös,et al.  Intersection Theorems for Systems of Sets , 1960 .

[11]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  A. Hilton A THEOREM ON FINITE SETS , 1976 .

[13]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[14]  Robert Morris,et al.  Maximum-size antichains in random set-systems , 2016, Random Struct. Algorithms.

[15]  József Balogh,et al.  Erdős–Ko–Rado in Random Hypergraphs , 2009, Combinatorics, Probability and Computing.

[16]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[17]  Devdatt P. Dubhashi,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[18]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[19]  Jeff Kahn,et al.  Mantel's theorem for random graphs , 2012, Random Struct. Algorithms.

[20]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[21]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[22]  Jeff Kahn,et al.  Thresholds and Expectation Thresholds , 2007, Comb. Probab. Comput..

[23]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[24]  József Balogh,et al.  A random version of Sperner's theorem , 2014, J. Comb. Theory, Ser. A.

[25]  R. Pemantle Towards a theory of negative dependence , 2000, math/0404095.

[26]  Miklós Simonovits,et al.  Extremal subgraphs of random graphs , 1990, J. Graph Theory.

[27]  Peter Frankl,et al.  Erdös-Ko-Rado theorem with conditions on the maximal degree , 1987, J. Comb. Theory, Ser. A.

[28]  Bobby DeMarco,et al.  Turán's Theorem for random graphs , 2015 .

[29]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[30]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[31]  Béla Bollobás,et al.  Random Graphs , 1985 .

[32]  Mathias Schacht,et al.  Extremal Results in Random Graphs , 2013, 1302.2248.

[33]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[34]  Hong Liu,et al.  Intersecting families of discrete structures are typically trivial , 2014, J. Comb. Theory A.

[35]  Deryk Osthus,et al.  Maximum Antichains in Random Subsets of a Finite Set , 2000, J. Comb. Theory, Ser. A.