On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients
暂无分享,去创建一个
Stéphane Descombes | Thierry Dumont | Violaine Louvet | Marc Massot | M. Massot | T. Dumont | S. Descombes | V. Louvet
[1] V. Zagrebnov,et al. Note on the Paper “The Norm Convergence¶ of the Trotter–Kato Product Formula with Error Bound” by Ichinose and Tamura , 2001 .
[2] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[3] 一瀬 孝,et al. On the Norm Convergence of the Trotter-Kato Product Formula with Error Bound (スペクトル・散乱理論とその周辺) , 2001 .
[4] Stéphane Descombes,et al. Convergence of a splitting method of high order for reaction-diffusion systems , 2001, Math. Comput..
[5] Vitaly Volpert,et al. Traveling Wave Solutions of Parabolic Systems , 1994 .
[6] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[7] G. Strang. Accurate partial difference methods I: Linear cauchy problems , 1963 .
[8] E. Hairer,et al. Structure-Preserving Algorithms for Ordinary Differential Equations , 2006 .
[9] Fernando Casas,et al. On the convergence and optimization of the Baker–Campbell–Hausdorff formula , 2004 .
[10] Stéphane Descombes,et al. Strang's formula for holomorphic semi-groups , 2002 .
[11] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[12] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .