Human motion reconstruction from force sensors

Consumer-grade, real-time motion capture devices are becoming commonplace in every household, thanks to the recent development in depth-camera technologies. We introduce a new approach to capturing and reconstructing freeform, full-body human motion using force sensors, supplementary to existing, consumer-grade mocap systems. Our algorithm exploits the dynamic aspects of human movement, such as linear and angular momentum, to provide key information for full-body motion reconstruction. Using two pressure sensing platforms (Wii Balance Board) and a hand tracking device, we demonstrate that human motion can be largely reconstructed from ground reaction forces along with a small amount of arm movement information.

[1]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[2]  Hans-Peter Seidel,et al.  Performance capture from sparse multi-view video , 2008, ACM Trans. Graph..

[3]  Takeo Kanade,et al.  Shape-From-Silhouette Across Time Part II: Applications to Human Modeling and Markerless Motion Tracking , 2005, International Journal of Computer Vision.

[4]  Marko B. Popovic,et al.  Angular momentum in human walking , 2008, Journal of Experimental Biology.

[5]  Wojciech Matusik,et al.  Practical motion capture in everyday surroundings , 2007, SIGGRAPH 2007.

[6]  Jessica K. Hodgins,et al.  Accelerometer-based user interfaces for the control of a physically simulated character , 2008, ACM Trans. Graph..

[7]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[8]  C. Karen Liu,et al.  Performance-based control interface for character animation , 2009, SIGGRAPH 2009.

[9]  Michael Gleicher,et al.  Automated extraction and parameterization of motions in large data sets , 2004, SIGGRAPH 2004.

[10]  C. Karen Liu,et al.  Momentum-based parameterization of dynamic character motion , 2004, SCA '04.

[11]  Vinutha Kallem,et al.  Rate of change of angular momentum and balance maintenance of biped robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[13]  Chris Welman,et al.  INVERSE KINEMATICS AND GEOMETRIC CONSTRAINTS FOR ARTICULATED FIGURE MANIPULATION , 1993 .

[14]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[15]  Jessica K. Hodgins,et al.  Action capture with accelerometers , 2008, SCA '08.

[16]  Dinesh K. Pai,et al.  FootSee: an interactive animation system , 2003, SCA '03.

[17]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[18]  Jessica K. Hodgins,et al.  Accelerometer-based user interfaces for the control of a physically simulated character , 2008, SIGGRAPH 2008.

[19]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[20]  Wojciech Matusik,et al.  Practical motion capture in everyday surroundings , 2007, ACM Trans. Graph..

[21]  Taku Komura,et al.  Animating reactive motions for biped locomotion , 2004, VRST '04.

[22]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[23]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[24]  Peter-Pike J. Sloan,et al.  Artist‐Directed Inverse‐Kinematics Using Radial Basis Function Interpolation , 2001, Comput. Graph. Forum.

[25]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[26]  Norman I. Badler,et al.  Gesticulation behaviors for virtual humans , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).