Boriding response of AISI W1 steel and use of artificial neural network for prediction of borided layer properties

[1]  G. Fenske,et al.  Tribological performance of ion-beam-mixed Fe/B multilayers on M50 steel☆ , 1990 .

[2]  J. Pelleg,et al.  Diffusion in the Bα-Fe system and compound formation between electron gun deposited boron thin films and steel substrate , 1992 .

[3]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[4]  C. Bindal,et al.  Ultralow friction behavior of borided steel surfaces after flash annealing , 1996 .

[5]  A. H. Ucisik,et al.  Fracture toughness of boride formed on low-alloy steels , 1997 .

[6]  I. Campos,et al.  Structural and strength characterization of steels subjected to bonding thermochemical process , 1997 .

[7]  S. Al-Alawi,et al.  Prediction of fracture toughness using artificial neural networks (ANNs) , 1997 .

[8]  Ji-Ho Song,et al.  Neural network applications in determining the fatigue crack opening load , 1998 .

[9]  V. Jain,et al.  Modelling of abrasive flow machining process: a neural network approach , 1999 .

[10]  A. H. Ucisik,et al.  Characterization of borides formed on impurity-controlled chromium-based low alloy steels , 1999 .

[11]  John G. Lenard,et al.  Using neural networks to predict parameters in the hot working of aluminum alloys , 1999 .

[12]  A. H. Ucisik,et al.  The characterization of borided 99.5% purity nickel , 2000 .

[13]  N. Ueda,et al.  Boriding of nickel by the powder-pack method , 2000 .

[14]  H. K. D. H. Bhadeshia,et al.  Estimation of the amount of retained austenite in austempered ductile irons using neural networks , 2001 .

[15]  S. Malinov,et al.  Simulation of microhardness profiles for nitrocarburized surface layers by artificial neural network , 2001 .