GOODS-Herschel: identification of the individual galaxies responsible for the 80–290 μm cosmic infrared background

We propose a new method of pushing $Herschel$ to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24$\mu$m colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected $Herschel$ sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250$\mu$m and more than 3 in the 350$\mu$m and 500$\mu$m bands. We produce realistic mock $Herschel$ images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-$Herschel$ Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24$\mu$m prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24$\mu$m neighbours and the photometric accuracy index (PAI) directly extracted from the mock $Herschel$ images. After correction for completeness, thanks to our mock $Herschel$ images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100$\mu$m and 2.2 mJy at 160$\mu$m and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250$\mu$m, 350$\mu$m, and 500$\mu$m, respectively. The latter depths improve the detection limits of $Herschel$ by factors of 5 at 250$\mu$m, and 3 at 350$\mu$m and 500$\mu$m as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all $Herschel$ bands appear to be distant siblings of the Milky Way ($z$$\sim$0.96 for $\lambda$$<$300$\mu$m) with a stellar mass of $M_{\star}$$\sim$9$\times$10$^{10}$M$_{\odot}$.

[1]  J. Kneib,et al.  The cosmic far-infrared background buildup since redshift 2 at 70 and 160 microns in the COSMOS and GOODS fields , 2010, 1009.0419.

[2]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[3]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[4]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[5]  D. Lutz,et al.  Far-Infrared Surveys of Galaxy Evolution , 2014, 1403.3334.

[6]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[7]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[8]  R. B. Partridge,et al.  ARE YOUNG GALAXIES VISIBLE. II. THE INTEGRATED BACKGROUND. , 1967 .

[9]  H. Aussel,et al.  The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared , 2013, 1304.3936.

[10]  M. Schmidt The Rate of Star Formation , 1959 .

[11]  D. Elbaz,et al.  HerMES: The SPIRE confusion limit , 2010, 1005.2207.

[12]  L.Wang,et al.  Evolution of dust temperature of galaxies through cosmic time as seen by Herschel , 2010, 1009.1058.

[13]  D.Lutz,et al.  A study of the gas–star formation relation over cosmic time , 2010 .

[14]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[15]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[16]  Star formation and dust obscuration at z≈2: galaxies at the dawn of downsizing , 2009, 0905.1674.

[17]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[18]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[19]  Guilaine Lagache,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[20]  D. Elbaz,et al.  GOODS-Herschel: a population of 24 μm dropout sources at z < 2 , 2011, 1108.0838.

[21]  Michael G. Hauser,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001 .

[22]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[23]  David Elbaz,et al.  Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.

[24]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[25]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[26]  E. Bell,et al.  Star Formation and the Growth of Stellar Mass , 2007, 0704.3077.

[27]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[28]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[29]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[30]  D. Elbaz,et al.  HerMES: SPIRE galaxy number counts at 250, 350, and 500 μm , 2010, 1005.2184.

[31]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[32]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[33]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[34]  M. Halpern,et al.  HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations , 2010, 1009.5675.

[35]  P. R. M. Eisenhardt,et al.  The Nature of Faint 24 Micron Sources Seen in Spitzer Space Telescope Observations of ELAIS-N1 , 2004 .

[36]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.

[37]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[38]  M. Kaufman Primeval galaxies: Predicted luminosities , 1976 .

[39]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[40]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[41]  H. Aussel,et al.  Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background , 2010, 1001.0896.

[42]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[43]  G. Lagache,et al.  Predictions for Cosmological Infrared Surveys from Space with the Multiband Imaging Photometer for SIRTF , 2002, astro-ph/0211312.

[44]  J. Bock,et al.  HerMES: THE CONTRIBUTION TO THE COSMIC INFRARED BACKGROUND FROM GALAXIES SELECTED BY MASS AND REDSHIFT , 2013, 1304.0446.

[45]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[46]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[47]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[48]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[49]  Contribution of Infrared Galaxies to the Cosmic Background , 1968 .

[50]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[51]  A. Cimatti,et al.  Building the cosmic infrared background brick by brick with Herschel/PEP. ⋆ , 2011, 1106.3070.

[52]  L. Moustakas,et al.  The Nature of Faint 24 µ m sources Seen in Spitzer Observations of ELAIS-N1 , 2004 .

[53]  D. Elbaz,et al.  A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT z ∼ 3 , 2010, 1003.5773.

[54]  James J. Bock,et al.  SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS , 2009, 0906.0981.

[55]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[56]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[57]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[58]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[59]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[60]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[61]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[62]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[63]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.