Conformational Plasticity of GPCR Binding Sites

[1]  S. Vishveshwara,et al.  Geometry of proline-containing alpha-helices in proteins. , 2009, International journal of peptide and protein research.

[2]  C. Deber,et al.  Influence of glycine residues on peptide conformation in membrane environments. , 2009, International journal of peptide and protein research.

[3]  M. J. Lemieux,et al.  Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. , 2004, The Biochemical journal.

[4]  O. Lichtarge,et al.  Evolutionary Trace of G Protein-coupled Receptors Reveals Clusters of Residues That Determine Global and Class-specific Functions* , 2004, Journal of Biological Chemistry.

[5]  E. Pérez-Payá,et al.  Influence of proline residues in transmembrane helix packing. , 2004, Journal of molecular biology.

[6]  Yang Xiang,et al.  Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. , 2004, The Journal of biological chemistry.

[7]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[8]  Krzysztof Palczewski,et al.  Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. , 2003, Biochemistry.

[9]  Shoshana J. Wodak,et al.  Activation of CCR5 by Chemokines Involves an Aromatic Cluster between Transmembrane Helices 2 and 3* , 2003, The Journal of Biological Chemistry.

[10]  F. Cordes,et al.  Proline-induced distortions of transmembrane helices. , 2002, Journal of molecular biology.

[11]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[12]  F. Cordes,et al.  Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. , 2002, Biopolymers.

[13]  S. Miura,et al.  Constitutive Activation of Angiotensin II Type 1 Receptor Alters the Orientation of Transmembrane Helix-2* , 2002, The Journal of Biological Chemistry.

[14]  L. Pardo,et al.  Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine(1a) receptor ligands to explore the three-dimensional structure of the receptor. , 2002, Molecular pharmacology.

[15]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[16]  K. Martin,et al.  The critical role of transmembrane prolines in human prostacyclin receptor activation. , 2002, Molecular pharmacology.

[17]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Engelman,et al.  Motifs of serine and threonine can drive association of transmembrane helices. , 2002, Journal of molecular biology.

[19]  E. Querol,et al.  Thr90 is a key residue of the bacteriorhodopsin proton pumping mechanism , 2001, FEBS letters.

[20]  A. Rees,et al.  The hunchback and its neighbours: proline as an environmental modulator. , 2001, Trends in biochemical sciences.

[21]  J W Saldanha,et al.  Transmembrane Domains 4 and 7 of the M1Muscarinic Acetylcholine Receptor Are Critical for Ligand Binding and the Receptor Activation Switch* , 2001, The Journal of Biological Chemistry.

[22]  K. Neve,et al.  Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. , 2001, Molecular pharmacology.

[23]  M S Sansom,et al.  Proline‐induced hinges in transmembrane helices: Possible roles in ion channel gating , 2001, Proteins.

[24]  P Ghanouni,et al.  Functionally Different Agonists Induce Distinct Conformations in the G Protein Coupling Domain of the β2Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[25]  R. Zare,et al.  Single-molecule spectroscopy of the β2 adrenergic receptor: Observation of conformational substates in a membrane protein , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Ballesteros,et al.  Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. , 2001, Molecular pharmacology.

[27]  S. Wodak,et al.  A Conserved Asn in Transmembrane Helix 7 Is an On/Off Switch in the Activation of the Thyrotropin Receptor* , 2001, The Journal of Biological Chemistry.

[28]  K. Palczewski,et al.  Activation of rhodopsin: new insights from structural and biochemical studies. , 2001, Trends in biochemical sciences.

[29]  Shoshana J. Wodak,et al.  The TXP Motif in the Second Transmembrane Helix of CCR5 , 2001, The Journal of Biological Chemistry.

[30]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[31]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[32]  J. Ballesteros,et al.  The Forgotten Serine , 2000, The Journal of Biological Chemistry.

[33]  G Vriend,et al.  Receptors coupling to G proteins: Is there a signal behind the sequence? , 2000, Proteins.

[34]  Mark S.P. Sansom,et al.  Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices , 2000 .

[35]  Leonardo Pardo,et al.  Serine and Threonine Residues Bend α-Helices in the χ1 = g− Conformation , 2000 .

[36]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[37]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[38]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[39]  J. Ballesteros,et al.  The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. , 1999, Biophysical journal.

[40]  G von Heijne,et al.  A turn propensity scale for transmembrane helices. , 1999, Journal of molecular biology.

[41]  E C Hulme,et al.  The Functional Topography of Transmembrane Domain 3 of the M1 Muscarinic Acetylcholine Receptor, Revealed by Scanning Mutagenesis* , 1999, The Journal of Biological Chemistry.

[42]  D. Cafiso,et al.  The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. , 1999, Biophysical journal.

[43]  K D Ridge,et al.  Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Grossmann,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[45]  D. Langosch,et al.  The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues , 1998, Protein science : a publication of the Protein Society.

[46]  H. Bourne,et al.  How receptors talk to trimeric G proteins. , 1997, Current opinion in cell biology.

[47]  T. Ji,et al.  Roles of Transmembrane Prolines and Proline-induced Kinks of the Lutropin/Choriogonadotropin Receptor* , 1997, The Journal of Biological Chemistry.

[48]  J. Breed,et al.  Simulation studies of alamethicin-bilayer interactions. , 1997, Biophysical journal.

[49]  Brian K. Kobilka,et al.  Structural Instability of a Constitutively Active G Protein-coupled Receptor , 1997, The Journal of Biological Chemistry.

[50]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[51]  H. Khorana,et al.  Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. , 1996, Biochemistry.

[52]  Kenneth A Jacobson,et al.  Molecular architecture of G protein‐coupled receptors , 1996, Drug development research.

[53]  Jonathan A Javitch,et al.  Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method , 1995, Neuron.

[54]  D. Engelman,et al.  A dimerization motif for transmembrane α–helices , 1994, Nature Structural Biology.

[55]  S. Vishveshwara,et al.  Characterization of proline‐containing α‐helix (helix F model of bacteriorhodopsin) by molecular dynamics studies , 1993, Proteins.

[56]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[57]  Gunnar von Heijne,et al.  Proline kinks in transmembrane α-helices☆ , 1991 .

[58]  J. Thornton,et al.  Influence of proline residues on protein conformation. , 1991, Journal of molecular biology.

[59]  R. H. Yun,et al.  Proline in α‐helix: Stability and conformation studied by dynamics simulation , 1991 .

[60]  Dudley H. Williams,et al.  The influence of proline residues on α‐helical structure , 1990 .

[61]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[62]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[63]  B. Matthews,et al.  Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. , 1984, Journal of molecular biology.

[64]  Leonardo Pardo,et al.  Ser and Thr Residues Modulate the Conformation of Pro-Kinked Transmembrane α-Helices , 2004 .

[65]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[66]  Harel Weinstein,et al.  Three-dimensional representations of G protein-coupled receptor structures and mechanisms. , 2002, Methods in enzymology.

[67]  J. Ballesteros,et al.  Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation , 2002 .

[68]  P. Molinari,et al.  Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states. , 2000, Molecular pharmacology.

[69]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[70]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[71]  T L Blundell,et al.  The evolution and structure of aminergic G protein-coupled receptors. , 1994, Receptors & channels.